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Abstract— We consider the secure transmission of informa-
tion over an ergodic fading channel in the presence of an
eavesdropper. Our eavesdropper can be viewed as the wireless
counterpart of Wyner’s wiretapper. The secrecy capacity of such
a system is characterized under the assumption of asymptotically
long coherence intervals. We analyze the full Channel State
Information (CSI) case, where the transmitter has access to the
channel gains of the legitimate receiver and eavesdropper, and
the main CSI scenario where only the legitimate receiver channel
gain is known at the transmitter. In each scenario, the secrecy
capacity is obtained along with the optimal power and rate
allocation strategies. We then propose a low-complexity on/off
power allocation strategy that achieves near-optimal performance
with only the main channel CSI. More specifically, this scheme is
shown to be asymptotically optimal as the average SNR goes to
infinity, and interestingly, is shown to attain the secrecy capacity
under the full CSI assumption. Remarkably, our results reveal the
positive impact of fading on the secrecy capacity and establish the
critical role of rate adaptation, based on the main channel CSI,
in facilitating secure communications over slow fading channels.

I. INTRODUCTION

The notion of information-theoretic secrecy was first intro-
duced by Shannon [1]. This strong notion of secrecy does
not rely on any assumptions on the computational resources
of the eavesdropper. More specifically, perfect information-
theoretic secrecy requires that I(W ; Z) = 0, i.e., the signal
Z received by the eavesdropper does not provide any addi-
tional information about the transmitted message W . Shannon
considered a scenario where both the legitimate receiver and
the eavesdropper have direct access to the transmitted signal.
Under this model, he proved a negative result implying that the
achievability of perfect secrecy requires the entropy of the pri-
vate key K, used to encrypt the message W , to be larger than
or equal to the entropy of the message itself (i.e., H(K) ≥
H(W ) for perfect secrecy). However, it was later shown by
Wyner in [2] that this negative result was a consequence of
the over-restrictive model used in [1]. Wyner introduced the
wiretap channel which accounts for the difference in the two
noise processes, as observed by the destination and wiretapper.
In this model, the wiretapper has no computational limitations
and is assumed to know the codebook used by the transmitter.
Under the assumption that the wiretapper’s signal is a degraded
version of the destination’s signal, Wyner characterized the
tradeoff between the information rate to the destination and
the level of ignorance at the wiretapper (measured by its
equivocation), and showed that it is possible to achieve a non-

zero secrecy capacity. This work was later extended to non-
degraded channels by Csiszár and Körner [3], where it was
shown that the secrecy capacity is non-zero, unless the source-
wiretapper channel is less noisy than the source-destination
channel (referred as the main channel in the sequel).

More recently, the effect of slow fading on the secrecy
capacity was studied in [8], [9]. In these works, it is assumed
that the fading is quasi-static which leads to an alternative
definition of outage probability, wherein secure communica-
tions can be guaranteed only for the fraction of time when
the main channel is stronger than the channel seen by the
eavesdropper. This performance metric appears to have an
operational significance only in delay sensitive applications
with full Channel State Information (CSI). The absence of
CSI sheds doubt on the operational significance of outage-
based secrecy since it limits the ability of the source to know
which parts of the message are decoded by the eavesdropper.
In this paper, we focus on delay-tolerant applications which
allow for the adoption of an ergodic version of the slow
fading channel, instead of the outage-based formulation. Quite
interestingly, we show in the sequel that, under this model, one
can achieve a perfectly secure non-zero rate even when the
eavesdropper channel is less noisy than the legitimate channel
on the average. In particular, our work here characterizes the
secrecy capacity of the slow fading channel in the presence of
an eavesdropper. Our eavesdropper is the wireless counterpart
of Wyner’s wiretapper. We first assume that the transmitter
knows the CSI of both the legitimate and eavesdropper chan-
nels, and derive the optimal power allocation strategy that
achieves the secrecy capacity. Next we consider the case where
the transmitter only knows the legitimate channel CSI and,
again, derive the optimal power allocation strategy. We then
propose an on/off power transmission scheme, with variable
rate allocation, which approaches the optimal performance for
asymptotically large average SNR. Interestingly, this scheme
is also shown to attain the secrecy capacity under the full
CSI assumption which implies that, at high SNR values,
the additional knowledge of the eavesdropper CSI does not
yield any gains in terms of the secrecy capacity for slow
fading channels. Finally, our theoretical and numerical results
are used to argue that rate adaptation plays a more critical
role than power control in achieving the secrecy capacity of
slow fading channels. This observation contrasts the scenario
without secrecy constraints, where transmission strategies with
constant rate are able to achieve capacity [4].
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Fig. 1. The Fading Channel with an Eavesdropper

II. SYSTEM MODEL

The system model is illustrated in Fig. 1. The source S
communicates with a destination D in the presence of an
eavesdropper E. During any coherence interval i, the signal
received by the destination and the eavesdropper are given by,
respectively

y(i) = gM (i)x(i) + wM (i),

z(i) = gE(i)x(i) + wE(i),

where gM (i), gE(i) are the channel gains from the source to
the legitimate receiver (main channel) and the eavesdropper
(eavesdropper channel) respectively, and wM (i), wE(i) repre-
sent the i.i.d additive Gaussian noise with unit variance at the
destination and the eavesdropper respectively. We denote the
fading power gains of the main and eavesdropper channels by
hM (i) = |gM (i)|2 and hE(i) = |gE(i)|2 respectively. We
assume that both channels experience block fading, where
the channel gains remain constant during each coherence
interval and change independently from one coherence interval
to the next. The fading process is assumed to be ergodic
with a bounded continuous distribution. Moreover, the fading
coefficients of the destination and the eavesdropper in any
coherence interval are assumed to be independent of each
other. We further assume that the number of channel uses n1

within each coherence interval is large enough to allow for
invoking random coding arguments. As shown in the sequel,
this assumption is instrumental in our achievability proofs.

The source wishes to send a message W ∈ W =
{1, 2, · · · , M} to the destination. An (M, n) code consists of
the following elements: 1) a stochastic encoder fn(.) at the
source that maps the message1 w to a codeword xn ∈ Xn,
and 2) a decoding function φ: Yn → W at the legitimate
receiver. The average error probability of an (M, n) code at
the legitimate receiver is defined as

P n
e =

∑

w∈W

1

M
Pr(φ(yn) 6= w|w was sent). (1)

The equivocation rate Re at the eavesdropper is defined as
the entropy rate of the transmitted message conditioned on
the available CSI and the channel outputs at the eavesdropper,
i.e.,

Re
∆
=

1

n
H(W |Zn, hn

M , hn
E) , (2)

1The realizations of the random variables W,X, Y,Z are represented by
w,x, y, z respectively in the sequel.

where hn
M = {hM (1), · · · , hM (n)} and hn

E =
{hE(1), · · · , hE(n)} denote the channel power gains of
the legitimate receiver and the eavesdropper in n coherence
intervals, respectively. It indicates the level of ignorance
of the transmitted message W at the eavesdropper. In this
paper we consider only perfect secrecy which requires the
equivocation rate Re to be equal to the message rate. The
perfect secrecy rate Rs is said to be achievable if for any
ε > 0, there exists a sequence of codes (2nRs , n) such that
for any n ≥ n(ε), we have

P n
e ≤ ε,

Re =
1

n
H(W |Zn, hn

M , hn
E) ≥ Rs − ε.

The secrecy capacity Cs is defined as the maximum achievable
perfect secrecy rate, i.e.,

Cs
∆
= sup

P n
e
≤ε

Rs . (3)

Throughout the sequel, we assume that the CSI is known
at the destination perfectly. Based on the available CSI, the
transmitter adapts its transmission power and rate to maxi-
mize the perfect secrecy rate subject to a long-term average
power constraint P̄ .

III. FULL CSI AT THE TRANSMITTER

Here we assume that at the beginning of each coherence
interval, the transmitter knows the channel states of the le-
gitimate receiver and the eavesdropper perfectly. When hM

and hE are both known at the transmitter, one would expect
the optimal scheme to allow for transmission only when
hM > hE , and to adapt the transmitted power according to
the instantaneous values of hM and hE. The following result
formalizes this intuitive argument.

Theorem 1: When the channel gains of both the legitimate
receiver and the eavesdropper are known at the transmitter, the
secrecy capacity is given by

C(F )
s = max

P (hM ,hE)

∫ ∞

0

∫ ∞

hE

log

(

1 + hMP (hM , hE)

1 + hEP (hM , hE)

)

f(hM )f(hE)dhMdhE , (4)

such that E{P (hM , hE)} ≤ P̄ . (5)
Proof: A detailed proof of achievability and the con-

verse part is provided in [10]. Here, we outline the scheme
used in the achievability part. In this scheme, transmission
occurs only when hM > hE, and uses the power allocation
policy P (hM , hE) that satisfies the average power constraint
(5). Moreover, the codeword rate at each instant is set to
be log (1 + hMP (hM , hE)), which varies according to the
instantaneous channel gains. The achievable perfect secrecy
rate at any instant is then given by [log (1 + hMP (hM , hE))−
log (1 + hEP (hM , hE))]+. Averaging over all fading realiza-
tions, we get the average achievable perfect secrecy rate as

R(F )
s = E

{

[

log

(

1 + hMP (hM , hE)

1 + hEP (hM , hE)

)]+
}

.
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One can then optimize over all feasible power control policies
P (hM , hE) to maximize the perfect secrecy rate.

We now derive the optimal power allocation policy that
achieves the secrecy capacity under the full CSI assumption.
It is easy to check that the objective function is concave in
P (hM , hE), and hence, by using the Lagrangian maximization
approach for solving (4), we get the following optimality
condition

hM

1 + hMP (hM , hE)
−

hE

1 + hEP (hM , hE)
− λ = 0.

If for some (hM , hE), the value of P (hM , hE) obtained
from the above equation is negative, then it follows from the
concavity of the objective function w.r.t. P (hM , hE) that the
optimal value of P (hM , hE) is 0. Thus the optimal power
allocation policy at the transmitter is given by

P (hM , hE) =
1

2





√

(

1

hE
−

1

hM

)2

+
4

λ

(

1

hE
−

1

hM

)

(6)

−

(

1

hM
+

1

hE

)]+

,

where [x]+ = max{0, x}, and the parameter λ is a constant
that satisfies the power constraint in (5) with equality. The se-
crecy capacity is then determined by substituting this optimal
power allocation policy for P (hM , hE) in (4).

IV. ONLY MAIN CHANNEL CSI AT THE TRANSMITTER

In this section, we assume that at the beginning of each
coherence interval, the transmitter only knows the CSI of the
main channel (legitimate receiver).

A. Optimal Power Allocation
We first characterize the secrecy capacity under this scenario

in the following theorem.
Theorem 2: When only the channel gain of the legitimate

receiver is known at the transmitter, the secrecy capacity is
given by

C(M)
s = max

P (hM )

∫∫
[

log

(

1 + hMP (hM )

1 + hEP (hM )

)]+

f(hM )f(hE)dhMdhE , (7)

such that E{P (hM )} ≤ P̄ . (8)
Proof: A detailed proof of achievability and the converse

part is provided in [10]. Here, we outline the scheme used
to show achievability. We use the following variable rate
transmission scheme. During a coherence interval with main
channel fading state hM , the transmitter transmits codewords
at rate log(1 + hMP (hM )) with power P (hM ). This variable
rate scheme relies on the assumption of large coherence inter-
vals and ensures that when hE > hM , the mutual information
between the source and the eavesdropper is upper bounded by
log(1+hMP (hM )). When hE ≤ hM , this mutual information
will be log(1 + hEP (hM )). Averaging over all the fading
states, the average rate of the main channel is given by

∫∫

log (1 + hMP (hM )) f(hM )f(hE)dhMdhE ,

while the information accumulated at the eavesdropper is
∫∫

log (1 + min{hM , hE}P (hM )) f(hM )f(hE)dhMdhE .

Hence for a given power control policy P (hM ), the achievable
perfect secrecy rate is given by

R(M)
s = E

{

[

log

(

1 + hMP (hM )

1 + hEP (hM )

)]+
}

. (9)

One can then optimize over all feasible power control policies
P (hM ) to maximize the perfect secrecy rate. Finally, we
observe that our secure message is hidden across different
fading states (please refer to the proof in [10] for more details).

We now derive the optimal power allocation policy that
achieves the secrecy capacity under the main channel CSI
assumption. Similar to Theorem 1, the objective function
under this case is also concave, and using the Lagrangian
maximization approach for solving (7), we get the following
optimality condition.

hMPr (hE ≤ hM )

1 + hMP (hM )
−

∫ hM

0

(

hE

1 + hEP (hM )

)

f(hE)dhE = λ,

where λ is a constant that satisfies the power constraint in
(8) with equality. For any main channel fading state hM ,
the optimal transmit power level P (hM ) is determined from
the above equation. If the obtained power level turns out to
be negative, then the optimal value of P (hM ) is equal to
0. This follows from the concavity of the objective function
in (7) w.r.t. P (hM ). The solution to this optimization prob-
lem depends on the distributions f(hM ) and f(hE). In the
following, we focus on the Rayleigh fading scenario with
E{hM} = γM and E{hE} = γE in detail. With Rayleigh
fading, the objective function in (7) simplifies to

C(M)
s = max

P (hM )

∫ ∞

0

[log (1 + hMP (hM ))−

exp

(

1

γEP (hM )

)(

Ei
(

1

γEP (hM )

)

− (10)

Ei
(

hM

γE

+
1

γEP (hM )

))]

1

γM

e−(hM /γ
M

)dhM ,

where Ei(x) =
∫∞

x (e−t/t)dt.
Specializing the optimality conditions to the Rayleigh fading
scenario, it can be shown that the power level of the transmitter
at any fading state hM is obtained by solving the equation

λ =

(

(

1 − e−(hM/γ
E

)
)

hM

1 + hMP (hM )

)

−

(

1 − e−(hM /γ
E

)
)

P (hM )
+

exp
(

1
γ

E
P (hM )

)

γE(P (hM ))2

[

Ei
(

1

γEP (hM )

)

− Ei
(

1 + hMP (hM )

γEP (hM )

)]

.

If there is no positive solution to this equation for a particular
hM , then we set P (hM ) = 0. The secrecy capacity is then
determined by substituting this optimal power allocation policy
for P (hM ) in (10).

We observe that, unlike the traditional ergodic fading sce-
nario, achieving the optimal performance under a security
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constraint relies heavily on using a variable rate transmission
strategy. This can be seen by evaluating the performance of a
constant rate strategy where a single codeword is interleaved
across infinitely many fading realizations. This interleaving
will result in the eavesdropper gaining more information,
than the destination, when its channel is better than the main
channel, thereby yielding a perfect secrecy rate that is strictly
smaller than that in (9). It is easy to see that the achievable
perfect secrecy rate of the constant rate scheme, assuming a
Gaussian codebook, is given by

max
P (hM )

∫∫

log

(

1 + hMP (hM )

1 + hEP (hM )

)

f(hM )f(hE)dhMdhE ,

such that E{P (hM )} ≤ P̄ .

Unlike the two previous optimization problems, the objec-
tive function in this optimization problem is not a concave
function of P (hM ). Using the Lagrangian formulation, we
only get the following necessary Karush-Kuhn-Tucker (KKT)
conditions for the optimal point.

P (hM )

[

λ −
hM

1 + hMP (hM )
+

∫
(

hE

1 + hEP (hM )

)

f(hE)dhE

]

= 0,

λ ≥
hM

1 + hMP (hM )
−

∫
(

hE

1 + hEP (hM )

)

f(hE)dhE ,

E{P (hM )} = P̄ . (11)

B. On/Off Power Control
We now propose a transmission policy wherein the trans-

mitter sends information only when the channel gain of the
legitimate receiver hM exceeds a pre-determined constant
threshold τ > 0. Moreover, when hM > τ , the transmitter
always uses the same power level P . However, it is crucial to
adapt the rate of transmission instantaneously as log(1+hMP )
with hM . It is clear that for an average power constraint P̄ ,
the constant power level used for transmission will be

P =
P̄

Pr(hM > τ)
.

Using a similar argument as in the achievable part of Theo-
rem 2, we get the perfect secrecy rate achieved by the proposed
scheme, using Gaussian inputs, as

R(CP )
s = E{hM >τ}

{

[

log

(

1 + hMP

1 + hEP

)]+
}

.

Specializing to the Rayleigh fading scenario, we get

P =
P̄

Pr(hM > τ)
= P̄ e(τ/γ

M
) ,

and the secrecy capacity simplifies to

R(CP )
s =

∫ ∞

τ

∫ hM

0

[

log

(

1 + hM P̄ e(τ/γ
M

)

1 + hEP̄ e(τ/γ
M

)

)]

1

γM

e−(hM/γ
M

) 1

γE

e−(hE/γ
E

)dhEdhM .

One can then optimize over the threshold τ to get the maxi-
mum achievable perfect secrecy rate.

Finally, we establish the asymptotic optimality of this on/off
scheme as the available average transmission power P̄ → ∞.
For the on/off power allocation policy, we have

R(CP )
s = lim

P̄→∞
E{hM >τ∗}

{

[

log

(

1 + hMP

1 + hEP

)]+
}

.

Taking τ∗ = 0, we get P = P̄ and

R(CP )
s ≥ lim

P̄→∞

∫ ∞

0

∫ hM

0

log

(

(1/P̄ ) + hM

(1/P̄ ) + hE

)

f(hM )f(hE)dhEdhM

(a)
=

∫ ∞

0

∫ hM

0

lim
P̄→∞

log

(

(1/P̄ ) + hM

(1/P̄ ) + hE

)

f(hM )f(hE)dhEdhM

=

∫ ∞

0

∫ hM

0

log

(

hM

hE

)

f(hM )f(hE)dhEdhM

= E{hM >hE}

{

log

(

hM

hE

)}

, (12)

where (a) follows from the Dominated Convergence Theorem,
since
∣

∣

∣

∣

log

(

(1/P̄ ) + hM

(1/P̄ ) + hE

)∣

∣

∣

∣

≤

∣

∣

∣

∣

log

(

hM

hE

)∣

∣

∣

∣

, ∀P̄ when hM > hE ,

and
∫ ∞

0

∫ hM

0

log

(

hM

hE

)

f(hM )f(hE)dhEdhM < ∞,

since E{hM} < ∞,
∣

∣

∣

∫ 1

0
log x dx

∣

∣

∣
= 1 < ∞ and

f(hM ), f(hE) are continuous and bounded.
Now under the full CSI assumption, we have

C(F )
s = E{hM >hE}

{

log

(

1
P (hM ,hE) + hM

1
P (hM ,hE) + hE

)}

≤ E{hM >hE}

{

log

(

hM

hE

)}

. (13)

From (12) and (13), it is clear that the proposed on/off power
allocation policy that uses only the main channel CSI achieves
the secrecy capacity under the full CSI assumption as P̄ → ∞.
Thus the absence of eavesdropper CSI at the transmitter does
not reduce the secrecy capacity at high SNR values.

V. NUMERICAL RESULTS

As an additional benchmark, we first obtain the performance
when the transmitter does not have any knowledge of both the
main and eavesdropper channels (only receiver CSI). In this
scenario, the transmitter is unable to exploit rate/power adap-
tation and always transmits with power P̄ . It is straightforward
to see that the achievable perfect secrecy rate in this scenario
(using Gaussian inputs) is given by

R(R)
s =

[
∫∫

log

(

1 + hM P̄

1 + hEP̄

)

f(hM )f(hE)dhMdhE

]+

=

[
∫ ∞

0

log
(

1 + hM P̄
)

f(hM )dhM−

∫ ∞

0

log
(

1 + hEP̄
)

f(hE)dhE

]+

,
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Fig. 2. Performance comparison for the symmetric scenario γM = γE = 1.

which reduces to the following for the Rayleigh fading sce-
nario

R(R)
s =

[

exp

(

1

γM P̄

)

Ei
(

1

γM P̄

)

− exp

(

1

γEP̄

)

Ei
(

1

γE P̄

)]+

.

Thus when γE ≥ γM , R
(R)
s = 0. The results for the Rayleigh

normalized-symmetric case (γM = γE = 1) are presented in
Fig. 2. It is clear that the performance of the on/off power
control scheme is very close to the secrecy capacity (with
only main channel CSI) for a wide range of SNRs and, as
expected, approaches the secrecy capacities, under both the
full CSI and main channel CSI assumptions, at high values of
SNR. The performance of the constant rate scheme is much
worse than the other schemes that employ rate adaptation.
Here we note that the performance curve for the constant
rate scheme might be a lower bound to the secrecy capacity
(since the KKT conditions are necessary but not sufficient for
non-convex optimization). We then consider an asymmetric
scenario, wherein the eavesdropper channel is more capable
than the main channel, with γM = 1 and γE = 2. The
performance results for this scenario are plotted in Fig. 3.
Again it is clear from the plot that the performance of the
on/off power control scheme is optimal at high values of SNR,
and that rate adaptation schemes yield higher perfect secrecy
rates than constant rate transmission schemes.

VI. CONCLUSIONS

We have characterized the secrecy capacity of the slow
fading channel with an eavesdropper under different assump-
tions on the available transmitter CSI. Our work established
the interesting result that a non-zero perfectly secure rate is
achievable in the fading channel even when the eavesdropper
is more capable than the legitimate receiver (on the average).
By contrasting this conclusion with the traditional AWGN
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scenario, one can see the positive impact of fading on enhanc-
ing the secrecy capacity. Furthermore, we proposed a low-
complexity on/off power transmission scheme and established
its asymptotic optimality. This optimality showed that the
presence of eavesdropper CSI at the transmitter does not
offer additional gains in the secrecy capacity for slow fading
channels, at high enough SNR levels. The knowledge of the
main channel CSI, however, is crucial since it is easy to see
that the absence of this information leads to a zero secrecy
capacity when the eavesdropper is more capable than the
legitimate receiver on the average. Finally, our theoretical and
numerical results elucidated the critical role of appropriate
rate adaptation in facilitating secure communications over slow
fading channels.
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