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Abstract—In this correspondence, we consider communication over Au-
tomatic Repeat reQuest (ARQ) memoryless channels with deadlines. In
particular, an upper boundL is imposed on the maximum number of ARQ
transmission rounds. In this setup, it is shown that incremental redundancy
ARQ outperforms Forney’s memoryless decoding in terms of the achiev-
able error exponents.

Index Terms—Erasure decoding, error exponents, incremental redun-
dancy Automatic Repeat reQuest (ARQ), joint decoding.

I. INTRODUCTION

In [1], Burnashev characterized the maximum error exponent achiev-
able over discrete memoryless channels (DMCs) in the presence of per-
fect output feedback. Interestingly, Forney has shown that even one-bit
feedback increases the error exponent significantly [2]. More specifi-
cally, Forney proposed a memoryless decoding scheme, based on the
erasure decoding principle, which achieves a significantly higher error
exponent than that achievable through maximum likelihood (ML) de-
coding without feedback [3]. In Forney’s scheme, the transmitter sends
codewords of block length N . After receiving each block of N sym-
bols, the receiver uses a reliability-based erasure decoder and feeds
back one ACK/NACK bit indicating whether it has accepted/erased
the received block, respectively. If the transmitter receives a NACK
message, it then retransmits the same N -symbol codeword. After each
transmission round, the receiver attempts to decode the message using
only the latest N received symbols, and discards the symbols received
previously. This process is repeated until the receiver decides to accept
the latest received block and transmits an ACK message back to the
transmitter.

It is intuitive to expect a better performance from schemes that do not
allow for discarding the previous observations at the decoder, as com-
pared with memoryless decoding. Our work here is concerned with one
variant of such schemes, i.e., Incremental Redundancy Automatic Re-
peat reQuest (IR-ARQ) [4]. We further impose a deadline constraint in
the form of an upper boundL on the maximum number of ARQ rounds.
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In the asymptotic case L ! 1, we argue that IR-ARQ achieves the
same error exponent as memoryless decoding, denoted by EF (R). On
the other hand, for finite values of L, it is shown that IR-ARQ gener-
ally outperforms memoryless decoding, in terms of the achievable error
exponents (especially at high rates and/or small values of L). For ex-
ample, we show that L = 4 is enough for IR-ARQ to achieve EF (R)
for any binary symmetric channel (BSC), whereas the performance of
memoryless decoding falls significantly short from this limit.

The rest of this correspondence is organized as follows. In Section II,
we briefly review the memoryless decoding scheme without any delay
constraints, and argue that allowing for memory in decoding does
not improve the error exponent. The performance of the memoryless
decoder and the incremental redundancy scheme, under the deadline
constraint, is characterized in Section III. In Section IV, we consider
specific channels (like the BSC, VNC and AWGN channels) and
quantify the performance improvement achieved by incremental re-
dundancy transmission. Finally, some concluding remarks are offered
in Section V.

II. THE ARQ CHANNEL

We first give a brief overview of the memoryless decoding scheme
proposed by Forney in [2]. The transmitter sends a codeword xm

of length N , where m 2 f1; � � � ;Mg. Here M represents the total
number of messages at the transmitter, each of which is assumed to
be equally likely. The transmitted codeword reaches the receiver after
passing through a memoryless channel with transition probability
p(yjx). We denote the received sequence as y. The receiver uses an
erasure decoder which decides that the transmitted codeword was xm
iff y 2 Rm, where

Rm = y :
p(yjxm)

k 6=m
p(yjxk)

� eNT (1)

where T � 0 is a controllable threshold parameter. If (1) is not satis-
fied for anym 2 f1; � � � ;Mg, then the receiver declares an erasure and
sends a NACK bit back to the transmitter. On receiving a NACK bit,
the transmitter repeats the codeword corresponding to the same infor-
mation message. We call such a retransmission as an ARQ round. The
decoder discards the earlier received sequence and uses only the latest
received sequence ofN symbols for decoding (memoryless decoding).
It again applies the condition (1) on the newly received sequence and
again asks for a retransmission in the case of an erasure. When the de-
coder does not declare an erasure, the receiver transmits an ACK bit
back to the transmitter, and the transmitter starts sending the next mes-
sage. It is evident that this scheme allows for an infinite number of
ARQ rounds. This scheme can also be implemented using only one bit
of feedback (per codeword) by asking the receiver to only send back
ACK bits, and asking the transmitter to keep repeating continuously
until it receives an ACK bit. Since the number of needed ARQ rounds
for the transmission of a particular message is a random variable, we
define the error exponent of this scheme as follows.

Definition 1: The error exponent E(R) of a variable-length coding
scheme is defined as

E(R) = lim sup
N!1

�
log Pr(E)

��
(2)

where Pr(E) denotes the average probability of error, R denotes the
average transmission rate, and �� = (lnM=R) is the average decoding
delay of the scheme, when codewords of block length N are used in
each ARQ transmission round.
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The probability of error of the decoder in (1), after each ARQ round,
is given by [2]

Pr(") =
m k 6=m y2R

p(y;xm)

and the probability of erasure is given by

Pr(X) =
m y=2R

p(y;xm) � Pr("):

It is shown in [2] that these probabilities satisfy

Pr(X) � e�NE (R ;T ) and Pr(") � e�NE (R ;T ) (3)

where R1 = (lnM=N) denotes the rate of the first transmission round

E2(R1; T ) = E1(R1; T ) + T (4)

and E1(R1; T ) is given at high rates by [2]

E1(R1; T ) = max
0�s���1;p

Eo(s; �;p)� �R1 � sT (5)

Eo(s; �;p) = � log p(x)p(yjx)(1�s) dx

p(x)p(yjx)(s=�) dx
�

dy (6)

and at low rates by

E1(R1; T ) = max
0�s�1;��1;p

Ex(s; �;p)� �R1 � sT (7)

Ex(s; �;p) = �� log p(x)p(x1)

p(yjx)(1�s)p(yjx1)
sdy

(1=�)

dx dx1 (8)

where p = fp(x);8xg denotes the input probability distribution. (We
note that for discrete memoryless channels, the integrals in (6) and
(8) are replaced by summations.) The average decoding delay �� of the
memoryless decoding scheme is given by

�� =

1

k=1

kN Pr (Transmission stops after k ARQ rounds)

=

1

k=1

kN [Pr(X)](k�1)[1� Pr(X)] =
N

1� Pr(X)

which implies that the average effective transmission rate is given by

R =
lnM

��
=

lnM

N
[1� Pr(X)] = R1[1� Pr(X)]: (9)

It is clear from (3) and (9) that �� ! N and henceR! R1 asN !1,
if E1(R1; T ) > 0. The overall average probability of error can be now
computed as

Pr(E) =

1

k=1

[Pr(X)](k�1)Pr(") = Pr(")[1 + o(1)] (10)

where the second equality follows from (3) when E1(R1; T ) > 0. It
is, therefore, clear that the error exponent achieved by the memoryless
decoding scheme is

E(R) = lim sup
N!1

�
log Pr(E)

��

� lim sup
N!1

�
log e�NE (R ;T )[1 + o(1)]

��

= E2(R;T ):

It is shown in [2] that choosing the threshold T such thatE1(R1; T )!
0 maximizes the exponent E2(R1; T ) while ensuring that R ! R1

as N ! 1. This establishes the fact that the memoryless decoding
scheme achieves the feedback error exponent EF (R) defined as

EF (R) lim
E (R;T )!0

E2(R;T ) = lim
E (R;T )!0

T: (11)

At this point, it is interesting to investigate whether a better error ex-
ponent can be achieved by employing more complex receivers which
exploit observations from previous ARQ rounds in decoding (instead
of discarding such observations as in memoryless decoding). Unfortu-
nately, it is easy to see that this additional complexity does not yield
a better exponent in the original setup considered by Forney [2]. The
reason is that, as shown in (10), the overall probability of error in this
setup is dominated by the probability of error Pr(") in the first trans-
mission round. So, while our more complex decoding rule might im-
prove the probability of error after subsequent rounds, this improve-
ment does not translate into a better error exponent. In the following
section, however, we show that in scenarios where a strict deadline is
imposed on the maximum number of feedback rounds, significant gains
in the error exponent can be reaped by properly exploiting the received
observations from previous ARQ rounds (along with the appropriate
encoding strategy).

III. ARQ WITH A DEADLINE

In many practical systems, it is customary to impose an upper bound
L on the maximum number of ARQ rounds (in our notation, L � 2
since we include the first round of transmission in the count). Such a
constraint can be interpreted as a constraint on the maximum allowed
decoding delay or a deadline constraint. With this constraint, it is ob-
vious that the decoder can no longer use the rule in (1) during the
Lth ARQ round. Therefore, at the Lth round, the decoder employs the
maximum likelihood (ML) decoding rule to decide on the transmitted
codeword. We denote the probability of error of the ML decoder by
Pr(ML)(").

A. Memoryless Decoding

The following theorem characterizes lower and upper bounds on the
error exponent achieved by the memoryless decoding scheme, under
the deadline constraint L.

Theorem 2: The error exponent EMD(R;L) achieved by memory-
less decoding, under a deadline constraint L, satisfies1 (for 0�R�C)

Er(R) + (L� 1) max
0�s���1;p

Eo(s; �;p)� �R� sEr(R)

1 + s(L� 2)

� EMD(R;L) � LEsp(R) (12)

1We note that a tighter lower bound may be obtained by using the expurgated
exponent E (R) instead of the random coding exponent E (R) at low rates.
This observation will be used when generating numerical results.



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 11, NOVEMBER 2007 4267

whereEr(R)andEsp(R)denote the randomcodingandspherepacking
exponents of the memoryless channel, andEo(s; �;p) is as given in (6).

Proof: The average decoding delay of memoryless decoding is
given by

�� =

L�1

k=1

kN [Pr(X)](k�1)[1� Pr(X)] + LN [Pr(X)](L�1)

=

L�1

k=0

(k + 1)N [Pr(X)]k �
L�1

k=1

kN [Pr(X)]k

= N

L�1

k=0

[Pr(X)]k = N [1 + o(1)] (13)

where the last equality follows from (3) when E1(R1; T ) > 0. Thus,
the average effective transmission rate is given by

R =
lnM

��
=

lnM

N [1 + o(1)]
! R1;

as N !1 when E1(R1; T ) > 0. The average probability of error is
given by

PrMD(E) =

L�1

k=1

[Pr(X)](k�1)Pr(") + [Pr(X)](L�1)Pr(ML)(")

= Pr(")[1 + o(1)] + [Pr(X)](L�1)Pr(ML)(") (14)

� e
�N[E (R ;T )+T ][1 + o(1)]

+ e
�N [E (R )+(L�1)E (R ;T )] (15)

where the inequality follows from (3) and the random coding upper
bound on the ML decoding error probability [3]. LettingE1(R1; T )!
0 and maximizing T as before, we get the following error exponent

EMD(R;L) = lim sup
N!1

� ln PrMD(E)

��

� minfEF (R); Er(R)g = Er(R);

since the feedback exponent EF (R) is known to be greater than the
random coding exponent Er(R). Thus by setting E1(R1; T ) ! 0,
as suggested by intuitive reasoning, we find that memoryless decoding
does not give any improvement over ML decoding without feedback.
However, we can get better performance by optimizing the expression
in (15) w.r.t T without letting E1(R1; T ) ! 0. From (15), it is clear
that the optimal value of the threshold T � is the one that yields

E1(R1; T
�) + T

� = Er(R1) + (L� 1)E1(R1; T
�)

) T
� = Er(R1) + (L� 2)E1(R1; T

�): (16)

Using this optimal value of T � in (5) and solving for E1(R1; T
�), we

get

E1(R1; T
�) = max

0�s���1;p

Eo(s; �;p)� �R1 � sEr(R1)

1 + s(L� 2)
: (17)

Since EF (R1) > Er(R1), we have E1(R1; T
�) > 0 and hence R!

R1 as N ! 1. Thus the error exponent of memoryless decoding is
lower bounded by

EMD(R;L) � E2(R; T
�) = E1(R;T

�) + T
�

= Er(R) + (L� 1)E1(R;T
�)

= Er(R) + (L� 1)

� max
0�s���1;p

Eo(s; �;p)� �R� sEr(R)

1 + s(L� 2)
:

(18)

SinceE1(R;T
�) > 0, it is clear that the optimal threshold T � satisfies

0 � T � < EF (R) and thus the lower bound on EMD(R;L) in (18)
is smaller than the feedback exponent EF (R).

We now derive an upper bound onEMD(R;L) from (14) as follows:

PrMD(E) = Pr(")[1 + o(1)] + [Pr(X)](L�1)Pr(ML)(")

� [Pr(X)](L�1)Pr(ML)(")

� [Pr(X)](L�1) e
�NE (R ) (19)

where the last inequality follows from the sphere-packing lower bound
on the ML decoding error probability [3]. It is easy to see that the
probability of erasure Pr(X) of the decoder in (1) decreases when the
threshold parameter T is decreased. Thus the probability of erasure
Pr(X)jT=0 serves as a lower bound on Pr(X) for any T > 0. In [5],
upper and lower bounds on the erasure and error probabilities are de-
rived using a theorem of Shannon et al. [6]. From [5, eqs. 10 and 11],
we have

1

4M

M

m=1

exp �m(s)� s�
0
m(s)� s 2�00m(s)

< Pr(X) + Pr(") � 1

M

M

m=1

exp[�m(s)� s�
0
m(s)]

and

1

4M

M

m=1

exp �m(s) + (1� s)�0m(s)� (1� s) 2�0m(s)

< Pr(") � 1

M

M

m=1

exp �m(s) + (1� s)�0m(s)

where

�m(s) = ln p(yjxm)(1�s)

m 6=m

p(yjxm )

s

dy:

It is clear from (8) in [5] that the threshold parameter T is related to
the parameter �m(s) by �0m(s) = �NT . Thus the condition T = 0
corresponds to the condition �0m(s) = 0. Moreover, it is shown in [5]
that �m(s) and �00m(s) are also proportional to N . Using this fact and
the condition �0m(s) = 0 in the above expressions for the upper and
lower bounds on Pr(X) and Pr("), we get

1

4M

M

m=1

exp �m(s) 1 + o
1p
N

< Pr(X) + Pr(") � 1

M

M

m=1

exp[�m(s)] (20)

and

1

4M

M

m=1

exp �m(s) 1 + o
1p
N

< Pr(") � 1

M

M

m=1

exp [�m(s)] : (21)

It is clear from (20) and (21) that when T = 0, the exponents of the
upper and lower bounds coincide as N ! 1, and more importantly,
the exponent of the erasure probability Pr(X) is the same as that of the
error probability Pr("). These exponents are further equal to the expo-
nent of the ML decoding error probability since Pr(") � Pr(ML)(") �
Pr(") + Pr(X). Using this fact and the sphere-packing lower bound
on the ML decoding error probability in (19), we get

PrMD(E)� e
�NLE (R ) ) EMD(R;L) � LEsp(R)

since R! R1 as N !1.
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From Theorem 2, it is clear that ARQ with memoryless decoding
does not achieve Forney’s error exponent EF (R) when the maximum
number of ARQ roundsL is constrained, at least at high rates for which
LEsp(R) < EF (R). As expected, when L!1, the lower bound on
the error exponent in (12) becomes

lim
L!1

EMD(R;L) � max
0�s���1;p

Eo(s; �;p)� �R

s

= EF (R):

B. Incremental Redundancy ARQ

We now derive a lower bound on the error exponent of incremental
redundancy ARQ. In IR-ARQ, the transmitter, upon receiving a NACK
message, transmitsN new coded symbols (derived from the same mes-
sage). Since our results hinge on random coding arguments, these new
symbols are obtained as i.i.d. realizations from the probability distri-
bution that maximizes the error exponents for erasure decoding.2 The
decoder does not discard the received observations in the case of an era-
sure and uses the received sequences of all the ARQ rounds jointly to
decode the transmitted message. The following erasure decoding rule
is employed by the receiver: After the kth ARQ round, the decoder de-
cides on codeword xm iff y 2 R0m, where

R0m = y :
p(yjxm)

i 6=m p(yjxi)
� ekNT (22)

and y; fxig are vectors of length kN , which contain the received se-
quences and transmitted codewords (respectively) corresponding to the
k ARQ rounds. If no codeword satisfies the above condition, then an
erasure is declared by the decoder. It is clear that our formulation allows
for varying the threshold Tk as a function of the number of ARQ rounds
k. Using thresholds fTkg that decrease with the number of ARQ rounds
k makes intuitive sense since the probability of error will be dominated
by small values of k (initial ARQ rounds), and hence, one needs to use
higher thresholds for these k values to reduce the overall probability
of error. We let Ek denote the event that the decoder declares an era-
sure during all the first k ARQ rounds. We also let E0 = ��� (the empty
set). The probability of erasure and error of the decoder in the kth ARQ
round will thus be denoted by Pr(k)(XjE(k�1)) and Pr(k)("jE(k�1)),
respectively.3 Here the subscript (k) is used to highlight the fact that the
decoder uses a received sequence of length kN for decoding in the kth
ARQ round. We are now ready to state our main result in this section.

Theorem 3: The error exponent EIR(R;L) achieved by IR-ARQ,
under a deadline constraint L, is given by4

EIR(R;L) � minfEF (R); LE�r (R=L)g; (23)

where E�r ( � ) denotes the error exponent achieved by ML decoding
under the probability distribution that is optimal for erasure decoding.

2Note that this optimal error exponent distribution for erasure decoding might
not be optimal for ML decoding. However, for the BSC, VNC, and AWGN
channels considered in the next section, the optimal distributions for erasure
decoding and ML decoding coincide.

3It clearly follows from our notations that Pr (X jE ) = Pr(X) and
Pr ("jE ) = Pr(").

4Replacing the random coding exponent E (R) by the expurgated exponent
E (R) may yield a tighter lower bound at low rates.

Proof: The average decoding delay for IR-ARQ is given by

�� =

L

k=1

kNPr(Transmission stops after k ARQ rounds)

=

L�1

k=1

kN

k�1

i=1

Pr(i) XjE(i�1) 1� Pr(k) XjE(k�1)

+ LN

L�1

i=1

Pr(i) XjE(i�1)

=

L�1

k=0

(k + 1)N

k

i=1

Pr(i) XjE(i�1)

�

L�1

k=1

kN

k

i=1

Pr(i) XjE(i�1)

= N 1 +

L�1

k=1

k

i=1

Pr(i) XjE(i�1)

= N 1 +

L�1

k=1

Pr(X)

k

i=2

Pr(i) XjE(i�1)

� N 1 +

L�1

k=1

Pr(X) � N [1 + LPr(X)] : (24)

Since Pr(X) � e�NE (R ;T ), it follows that �� ! N (and, hence,
the average effective transmission rate R ! R1) as N ! 1 when
E1(R1; T ) > 0.

The average probability of error of IR-ARQ is given by

PrIR(E) =

L

k=1

Pr(error in the kth ARQ round)

=

L�1

k=1

Pr(k) "; E(k�1) +Pr
(ML)
(L) ";E(L�1)

(a)

�

L�1

k=1

Pr(k)(") + Pr
(ML)
(L) (") (25)

where Pr(k)(") refers to the probability of error when the decoder al-
ways waits for kN received symbols before decoding. Here the in-
equality (a) follows from the fact that the joint probability cannot be
greater than the marginals. Following the derivation in [2], it can easily
be seen that for the thresholds fTkg used in the decoding rule (22), we
have

Pr(k)(X) � e�kNE (R =k;T )

and

Pr(k)(") � e�kN[E (R =k;T )+T ]: (26)

Using this and the fact that Pr(ML)
(L) (") � e�LNE (R =L), sinceE�r ( � )

is the error exponent achieved by ML decoding under the probability
distribution that maximizes the error exponent for erasure decoding,
we can upper bound the average probability of error of IR-ARQ by

PrIR(E) �

L�1

k=1

e�kN [E (R =k;T )+T ] + e�LNE (R =L): (27)

Thus the error exponent achieved by IR-ARQ is lower bounded by

EIR(R;L) = lim sup
N!1

�
ln PrIR(E)

��

� min LE�r (R=L);fk[E1(R=k;Tk) + Tk]g
L�1
k=1 :

Taking Tk = (T=k); 8k 2 f1; � � � ; (L� 1)g, we get

EIR(R;L) � min LE�r (R=L);fkE1(R=k;T=k) + TgL�1k=1

= min(LE�r (R=L);E1(R;T ) + T )
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where the last equality follows from the fact that E1(R=k; T=k) is an
increasing function of k. Letting E1(R;T ) ! 0 and maximizing T ,
we get

EIR(R;L) � min(LE�
r (R=L);EF (R)):

From Theorem 3, it is clear that if the deadline constraint L is large
enough to satisfy

LE�
r (R=L) � EF (R) (28)

then IR-ARQ achieves the feedback exponent EF (R) at rate R. In
the following section, we quantify the gains achieved by IR-ARQ, as
compared with memoryless decoding, for specific channels.

IV. EXAMPLES

A. The Binary Symmetric Channel (BSC)

Here, we compare the error exponents achievable by memoryless
decoding and IR-ARQ over a BSC with crossover probability �. The
bounds on the error exponents in (12) and (23) are plotted for a BSC
with � = 0:15 in Fig. 1(a) and (b) for L = 2 and L = 4, respec-
tively. The ML decoding error exponent (corresponding to the case
L = 1) and the feedback exponent EF (R) are also plotted for com-
parison purposes. From Fig. 1(a), we find that when L = 2, memo-
ryless decoding achieves an error exponent that is strictly suboptimal
to the feedback exponent EF (R) for all R � 0:006. On the other
hand, IR-ARQ achieves EF (R) for 0:18 � R � C . Moreover, it
performs strictly better than memoryless decoding for all R � 0:057.
When L = 4, from Fig. 1(b), we find that the error exponent for the
memoryless decoder is strictly suboptimal, as compared with EF (R),
for R � 0:141, while IR-ARQ achieves EF (R) for all rates below
capacity. Finally, we note that even when L = 100, memoryless de-
coding is still strictly suboptimal, as compared with IR-ARQ, for all
rates 0:38 � R � C = 0:39.

Now, we elaborate on our observation from Fig. 1(b) that L = 4 is
sufficient to achieve EF (R) with IR-ARQ when � = 0:15. In partic-
ular, we wish to investigate the existence of a finite value forL such that
EF (R) is achieved by IR-ARQ universally (i.e., for all 0 � � � 0:5
and all rates below capacity). Toward this end, we derive an upper
bound on the minimum required deadline constraint Lreq for a given
BSC(�). From (23), it is clear that Lreq is upper bounded by the min-
imum value of L required to satisfy5 LEr(R=L) � EF (R) for all
0 � R � C . We first prove the following result.

Lemma 4: A sufficient condition for ensuring that LEr(R=L) �
EF (R) for all rates 0 � R � C for a BSC is given by LEr(0) �
EF (0).

Proof: It has been shown in [3] that both the random coding ex-
ponent Er(R) and the feedback exponent EF (R) are decreasing func-
tions of R. Since

LEr(R=L) = max
0���1

fLEo(�)� �Rg (29)

its slope at a given rate R is given by (following the steps in [3, eq.
(5.6.28–5.6.33)])

@(LEr(R=L))

@R
= ���(R) � �1

5Note that E ( � ) = E ( � ) for the BSC, VNC and AWGN channels, since
the optimal distributions for ML decoding and erasure decoding coincide.

where ��(R) is the value of � that maximizes the RHS of (29) for rate
R. For a BSC, it is shown in [2] that the feedback exponent can be
expressed as

EF (R) = (C �R) + max
��0

fEo(�)� �Rg: (30)

Hence, the slope of EF (R) at a given rate R is given by

@EF (R)

@R
= �(1 + �0(R)) � �1

where �0(R) is the value of � that maximizes the RHS of (30) for rateR.
Hence, it is clear that for any value ofR, the rate of decrease of the feed-
back exponent EF (R) is higher than that of LEr(R=L). It is shown in
[2] that EF (C) = Er(C) = 0. Since Er(R) is a decreasing function
of R, we know that Er(C=L)> Er(C) = 0. Thus, when R = C , we
have LEr(C=L)> EF (C). Now, if the value of L is chosen such that
LEr(0) > EF (0), it is clear that the curve LEr(R=L) lies strictly
above the curve EF (R) in the range 0 � R � C . This directly fol-
lows from the fact that the feedback exponent EF (R) decreases faster
than LEr(R=L). Hence, the condition LEr(0) � EF (0) is sufficient
to guarantee that LEr(R=L) � EF (R) for all 0 � R � C .

The above lemma shows that for any BSC(�), an upper bound on
Lreq depends only on the values of EF (R) and Er(R) at R = 0.
From the results in [3], it can be shown that

Er(0) = ln 2� ln(1 + 2 �(1� �))

and

EF (0) = C � ln 2� ln( �(1� �)): (31)

Using Lemma 4 and (31), we find that a deadline constraint of L = 4
is enough to achieve the feedback exponent EF (R) at all rates below
capacity for any BSC with crossover probability 0:05 � � � 0:5.
However, the upper bound on Lreq, derived using Lemma 4, becomes
loose as � ! 0. To overcome this limitation, we use the expurgated
exponent Eex(R) [3] instead of the random coding exponent Er(R) at
low rates. Using numerical results, we find that the actual value of the
minimum required deadline constraint is Lreq = 3 for all BSCs with
� � 0:025, and Lreq = 4 otherwise.

B. The Very Noisy Channel (VNC)

As noted in [3], a channel is very noisy when the probability of re-
ceiving a given output is almost independent of the input, i.e., when the
transition probabilities of the channel are given by

pjk = !j(1 + �jk)

where f!jg denotes the output probability distribution, and f�jkg are
such that j�jkj � 1 for all j and k, and

j
!j�jk = 0; 8k. We plot the

bounds on the error exponents given in (12) and (23), derived from the
results in [2], in Fig. 2(a) and (b) for a VNC with capacity C = 1 for
L = 2 andL = 4, respectively. From the plots, it is clear that memory-
less decoding is strictly suboptimal to IR-ARQ for all rates R � 0:12
(with L = 2) and R � 0:25 (with L = 4). Moreover, it is evident
that L = 4 is sufficient for IR-ARQ to achieve the feedback exponent
EF (R) for all rates below capacity. This observation motivates the fol-
lowing result.

Lemma 5: For the very noisy channel, a deadline constraint of
L = 4 is enough for the proposed incremental redundancy scheme to
achieve the feedback exponent EF (R) for all rates 0 � R � C .

Proof: For a VNC, the random coding exponent is given by [2]

Er(R) =
C

2
�R ; 0 � R � C

4

(
p
C �pR)2; C

4
� R � C

: (32)
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Fig. 1 (a) Comparison of error exponents for a BSC with � = 0:15 and L = 2. (b) Comparison of error exponents for a BSC with � = 0:15 and L = 4.

Thus, under the deadline constraint L = 4, we have

4Er(R=4) = 4
C

2
� R

4
= 2C �R; 0 � R � C:

Also

EF (R) = (C �R) + (
p
C �

p
R)2

� (C �R) + (
p
C)2 = 4Er(R=4):
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Fig. 2. (a) Comparison of error exponents for a VNC with C = 1 and L = 2. (b) Comparison of error exponents for a VNC with C = 1 and L = 4.

Putting L = 4 in (23), the error exponent of IR-ARQ is given by

EIR(R; 4) � minfEF (R); 4Er(R=4)g = EF (R): (33)

Thus, for a VNC, it is clear that a deadline constraint of L = 4 is
enough for IR-ARQ to achieve the feedback exponent EF (R) at all
rates below capacity.

C. The Additive White Gaussian Noise (AWGN) Channel

The random coding and expurgated exponents for an AWGN channel
with a Gaussian input of power A and unit noise variance, are given
in [3]. The sphere-packing exponent of the AWGN channel is derived
in [7]–[9]. The parameter Eo(s; �;p) in the lower bound in (12) is
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Fig. 3. (a) Comparison of error exponents for an AWGN channel with SNR = 3 dB and L = 2. (b) Comparison of error exponents for an AWGN channel with
SNR = 3 dB and L = 4.

replaced by Eo(s; �; t) which, following the steps in the derivation of
the random coding exponent in [3], is given by

Eo(s; �; t) = (1 + �)tA+
�

2
log 1� 2tA+

sA

�

+
1

2
log(1� 2tA) +

1

2
log 1 +

sA 1� s� s

�

1� 2tA+ sA

�

:

The feedback exponent for the AWGN channel is then given by [2], [3]

EF (R) = max
0�s���1;t�0

Eo(s; �; t)� �R

s
:

We plot the bounds on the error exponents, given in (12) and (23),
in Fig. 3(a) and (b) for an AWGN channel with signal-to-noise ratio
A = 3 dB for the deadline constraints L = 2 and L = 4 respectively.



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 11, NOVEMBER 2007 4273

The plots clearly indicate that memoryless decoding is strictly sub-
optimal to IR-ARQ for all ratesR � 0:19 (with L = 2) andR � 0:46
(with L = 4). Moreover, when L = 4, the proposed IR-ARQ scheme
achieves the feedback exponentEF (R) for all rates below capacity (at
the moment, we do not have a proof that this observation holds univer-
sally as in the case of BSCs).

V. CONCLUSION

We considered the error exponents of memoryless ARQ channels
with an upper bound L on the maximum number of retransmission
rounds. In this setup, we have established the superiority of IR-ARQ, as
compared with Forney’s memoryless decoding. For the BSC and VNC,
our results show that choosing L = 4 is sufficient to ensure the achiev-
ability of Forney’s feedback exponent, which is typically achievable
with memoryless decoding in the asymptotic limit of large L. Finally,
in the AWGN channel, numerical results also show the superiority of
IR-ARQ over memoryless decoding, in terms of the achievable error
exponent.
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On the Maximal Diversity Order of Spatial Multiplexing
With Transmit Antenna Selection

Joakim Jaldén, Student Member, IEEE, and
Björn Ottersten, Fellow, IEEE

Abstract—Zhang et al. recently derived upper and lower bounds on the
achievable diversity of anN �N i.i.d. Rayleigh fading multiple antenna
system using transmit antenna selection, spatial multiplexing and a linear
receiver structure. For the case ofL = 2 transmitting (out ofN available)
antennas the bounds are tight and therefore specify the maximal diversity
order. For the general case withL � min(N ;N ) transmitting antennas
it was conjectured that the maximal diversity is (N �L+1)(N �L+1)
which coincides with the lower bound. Herein, we prove this conjecture for
the zero forcing and zero forcing decision feedback (with optimal detection
ordering) receiver structures.

Index Terms—Antenna selection, diversity, spatial multiplexing, zero
forcing receiver.

I. INTRODUCTION

The multiple antennas in a multiple-input–multiple-output (MIMO)
wireless system can be used either to increase the data rate or reliability
(diversity) of the wireless link [1]. In order to capitalize on the bene-
fits offered by the MIMO wireless link while maintaining manageable
complexity and cost the use of antenna selection has been previously
suggested [2]. In a system using antenna selection, only a small subset
of the available antennas would typically be used, thereby limiting the
number of RF chains required.

In [3] Zhang et al. rigorously analyzed the maximal achievable di-
versity for a system transmitting L independent data-streams from L

out of NT possible transmit antennas in conjuncture with linear
(decision feedback) processing at the receiver. In particular, for
the case of a block independent and identically distributed (i.i.d.)
Rayleigh-fading channel it was shown that the maximal diversity of
such a system is bounded between ML (NT �L+1)(NR�L+1)

and MU (NT � L + 1)(NR � 1) where NR is the number of
antennas at the receiver. Since ML = MU for L = 2 these bounds
uniquely determine the maximal diversity in the case of two trans-
mitting antennas and thereby analytically prove some previous obser-
vations made in the literature [4], [5]. Further, for the general case
where 2 < L < min(NR; NT ) it was in [3] conjectured that the
maximal diversity coincides with the lower bound, ML. Herein, we
extend the analysis of [3] by proving this conjecture for the case of
the zero forcing (ZF) and ZF-decision-feedback (DF) receivers (with
optimal detection ordering). It should however be noted that the
cases of the minimum mean square error (MMSE) and MMSE-DF
receivers (although with a fixed detection ordering) also follow from
our result by applying the analysis in [3].

The structure of this correspondence is as follows. The system
model considered is covered in Section II, mainly in order to
the introduce notation. The reader is referred to [3] for details
regarding the systems model and a proper motivation of the problem
considered. Our main contribution is then given in Section III in the
form of Theorem 1.
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