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Abstract— In this paper, we consider dense wireless sensor
networks deployed to observe mutiple random processes. The
requirement is to reconstruct an estimate of each random process
at the corresponding collector node. This leads to multiple many-
to-one data gathering wireless channels that interfere with one
another. We derive the transport capacity that the network can
provide to each process and characterize an achievable rate
region for the dense multi-modal network. We further investigate
the number of processes that can be observed simultaneously
by the network. Specifically, we show that it is possible to
observe O

(
Nβ
)

processes simultaneously such that the transport
capacity scales as Θ (log (N)) for each of the observed processes,
with a large number of sensors N and a fixed total average
power. We show this result using a simple scheme based on
antenna sharing, similar to that proposed in [1]. We then
proceed to show that it is possible to simultaneously observe
O
(
Nβ
)

continuous, spatially bandlimited Gaussian processes
using a fixed total average power, through a scheme composed of
single dimensional quantization, distributed Slepian-Wolf source
coding, and the proposed antenna sharing strategy.

I. INTRODUCTION

The capacity of large scale ad-hoc wireless networks has
been shown to scale as Θ(

√
N) as the number of nodes N

per unit area grows to infinity [2]. This result advises against
the deployment of dense ad-hoc networks since the capacity
per node goes to zero as N → ∞. However, for dense
wireless sensor networks, the situation is different because
of the increasing correlation in the traffic generated by the
nodes as N grows. Some sensing applications require the
information observed by the sensors to be transported to a
central collector node (many-to-one channel), which has the
ability to process all the observed information and produce
an estimate of the entire random field (process) observed by
the sensors. For such applications, the transport capacity was
shown to scale as Θ (1) in [3], where a constraint is placed
on the maximum bit rate. Recently, it was shown in [1] that
this result is over-restrictive and the transport capacity was
shown to scale as Θ (log (N)) as N → ∞, when the bit
rate constraint is replaced by a total power constraint on the
network, which is more appropriate for wireless networks.

In this paper, we investigate a scenario similar to [1],
wherein the sensors simultaneously observe a number of
processes and wish to transport the observed information to
distinct collector nodes, each of which is capable of repro-
ducing one of the observed processes. We will refer to this
network as the multi-modal sensor network. We derive the

transport capacity that the network can provide to each process
and characterize an achievable rate region for the network.
We further investigate the number of processes that can be
observed simultaneously by the network. We first show that
it is possible to observe O

(
Nβ
)

processes simultaneously
in a dense multi-modal network, with a transport capacity
of Θ (log(N)) for each process as N → ∞. Through a
constructive approach, we show that, contrary to the many-
to-one scenario considered in [1] and [3], spatial reuse of the
bandwidth factors prominently in the multi-modal case. We
then proceed to show that it is possible to observe O

(
Nβ
)

spatially bandlimited Gaussian processes simultaneously, as
N → ∞, using a simple separation scheme composed
of single dimensional quantization, Slepian-Wolf distributed
source coding, and the proposed antenna sharing approach.

The rest of the paper is organized as follows. In Section II,
we present our modeling assumptions and introduce some
notation that will be used throughout the paper. Our results
pertaining to the per-process transport capacity of the multi-
modal network are developed in Section III. An achievable
rate region for the dense multi-modal network is characterized
in Section IV. In Section V, we present our main results
regarding the observability of continuous spatially bandlimited
Gaussian random processes by dense multi-modal wireless
networks. Finally, we offer some concluding remarks in Sec-
tion VI.

II. SYSTEM MODEL AND ASSUMPTIONS

We consider the scenario where N sensor nodes are dis-
tributed uniformly over the perimeter of a circle with unit
radius1. Here the network is assumed to be dense (i.e.,
N → ∞). Each sensor is capable of simultaneously observing
multiple random processes. M collector nodes (M < N ) are
placed on the axis along the center of the circle. Each collector
node is interested in gathering information about a different
process and the collector nodes do not cooperate with each
other. Thus M processes can be simultaneously observed by
the sensors. We denote the set of sensor nodes as {1, ..., N}
and the set of collector nodes as {N +1, ..., N +M}. We will
refer to the distance between the ith and jth nodes as di,j ,
where i, j ∈ {1, ..., N + M}. The distance of the (N + k)th

collector node from each of the sensor nodes is denoted as

1We realize that this pertains to a specific case. However, we use this
restriction to simplify the analysis.
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dk, i.e., di,N+k = dk,∀i ∈ {1, . . . , N}. We further denote the
maximum distance between the collector nodes and the set
of sensor nodes as dmax, i.e., dk ≤ dmax,∀k ∈ {1, . . . , M}.
We assume that the sensor nodes are equipped with receivers.
We use a discrete time model where yj [l], the complex-valued
signal received by the jth node at time l (j ∈ {1, ..., N +M}),
is given by

yj [l] =
M∑

k=1

∑
i∈{1,...,N}

i�=j

ejθi,j xk,i[l]
dδ

i,j

+ nj [l], (1)

where xk,i[l] is the complex-valued signal corresponding to
the kth process, transmitted by sensor node i at time l, δ is
the path loss exponent assumed to be strictly larger than zero,
θi,j is the phase shift resulting from the propagation delay, and
nj [l] is the zero mean, unit variance additive Gaussian noise
sample received at time l by receiver j. The noise samples
are assumed to be spatially and temporally independent. The
phase shift between the ith and jth nodes (θi,j) is assumed
to be uniformly distributed in [0, 2π] and is independent ∀i, j.
Moreover, it is assumed to be known at both nodes i and j. In
practice, these parameters can be estimated at a marginal loss
in throughput (the loss goes to zero as the time scale of the
network operation goes to infinity). In (1), it is assumed that
all the sensor nodes are synchronized with a common clock.
We further assume that the network operates in slotted frames
where the duration of one slot Ts is long enough to allow
for invoking the asymptotic additive white Gaussian noise
(AWGN) channel capacity theorem. Without loss of generality,
we focus our analysis on an arbitrary time slot. The path
loss model used in (1) implicitly assumes that all the nodes,
including the collector nodes, use identical omnidirectional
antennas.

We denote the random variable corresponding to the ith

process, observed by sensor node j at time l as uij [l]. Thus at
time l, sensor node j observes u1j [l], u2j [l], . . . , uMj [l]. For
the class of continuous random processes, we only consider
temporally stationary and bandlimited processes. We assume
that each process is sampled at the Nyquist rate such that
uij [l1] and uij [l2] are independent and identically distributed
for any l1 �= l2 and arbitrary i and j. The random variables
corresponding to different random processes are also assumed
to be independent at each sensor node, i.e., umj [l1] and unj [l2]
are independent for any m �= n and arbitrary j, l1 and l2.
The spatial observations uim[l] and uin[l] of process i are,
however, correlated for any arbitrary i and l. In fact, the
spatial correlation between the observations at adjacent nodes
is expected to grow as the density of sensors increases. We
assume that the joint distribution of all the observations is
known a-priori at all sensor nodes. This assumption facilitates
the use of distributed source coding in the Slepian-Wolf sense
as discussed in the sequel.

We place a constraint on the total average power consumed
by the network, i.e.,

1
Ts

Ts∑
l=1

M∑
i=1

N∑
j=1

|xi,j [l]|2 ≤ Ptotal, (2)

where Ptotal is the total average power assigned to the
network2, which is finite. Together with the finite bandwidth
of the shared wireless medium, we believe that this is a faithful
representation of the constraints imposed by the wireless
channel.

III. THE PER-PROCESS TRANSPORT CAPACITY

In this section, we assume that the information streams
generated by each process are spatially independent at
the different sensor nodes. The implications of the spatial
correlation between the observations are investigated in
Section V. In this context, we define the transport capacity
of the multi-modal sensor network with respect to (w.r.t) a
particular process observed by the network.

Definition 1: The transport capacity of the network w.r.t to
the kth process CN (k), is defined as the maximum number
of bits, belonging to the kth process, that can be transported
from the N source nodes to the kth collector node per unit
time3.

Definition 2: We say that CN (k) = Θ (log(N)) if there are
strictly positive constants c1, c2 such that, as N → ∞,

c1 log(N) ≤ CN (k) ≤ c2 log(N). (3)

Now we prove the following result that characterizes the
scaling law of the per-process transport capacity of dense
multi-modal sensor networks, outlined in Section II.

Theorem 3: The transport capacity of the multi-modal
network, outlined in Section II, w.r.t each of the observed
processes is Θ (log (N)).

Proof: Without loss of generality, we consider only the
transmission of the kth process. Now, the multi-modal network
simplifies to a many-to-one network transmitting only the kth

process. The transport capacity of the many-to-one sensor
network is known [1] to be Θ (log(N)). Thus the transport
capacity provided by the multi-modal network to each process
k is

CN (k) = Θ (log(N)) .

IV. AN ACHIEVABLE RATE REGION

We now characterize an achievable rate region for the
dense multi-modal sensor network.

Theorem 4: An achievable rate region for the dense multi-
modal sensor network (N → ∞) is given by Rk = αk

2 log(N)
with

αk ≤ 2δ

2δ + 1
logN

(
N

A

)
+ logN

(
Pk

Ptotal

)
, k ∈ {1, . . . , A}

2Ptotal is normalized to refer to the total average received power at a unit
distance from the transmitter.

3In our terminology, unit time refers to the duration of transmission of a
single symbol.
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where Rk denotes the throughput provided to the kth process,
Pk denotes the power allocated for the transmission of the
kth process and A represents the number of active4 processes.

Proof: To show achievability, we use a simple transmis-
sion scheme, similar to that proposed in [1], that exploits the
high density of the nodes to facilitate cooperative transmission.
For simplicity of presentation, we consider the symmetric
scenario where, for each observed process, all the source nodes
generate the same amount of information. The result can be
extended to arbitrary asymmetric scenarios using the same
argument made in [1].

The main idea of the proposed scheme is to allow closely
located nodes to cooperate with each other in transmitting
information to the collector nodes, which comes at a very small
cost for densely deployed networks. Each node distributes
its observed information about a particular process to its
neighbors. Since all the sensor nodes do not need to compete
for the same collector node, the concept of spatial frequency
reuse comes into play. Thereby other nodes, which are far from
this node, will be allowed to simultaneously transmit their
observed information about other processes to their neighbors.
In the next time slot, all the nodes which correctly decode
the transmissions intended to them, will cooperate to send
the information to the corresponding collector node through
beamforming.

We assume that at a particular time instant, only A out
of the M processes (collector nodes) are active. The kth

process (k ∈ {1, 2, . . . , A}) is allocated a power Pk such
that

∑A
k=1 Pk ≤ Ptotal. The sensor nodes are divided into

A sets with the kth set transmitting the kth process. All the
sensor nodes transmit using independent circularly symmetric
Gaussian codebooks. In the first time slot, a particular node
within each set will be assigned the entire power allocated
for observing the corresponding process. Without loss of
generality, we consider the transmission of process “k” by
the nodes in set “k”. The entire power Pk is assigned to node
“k1” and the other nodes in the set are only listening. Let
αk log(N) denote the rate of transmission of the kth process
(αk > 0). Then, a node kj in the set will be able to decode
the transmission of node k1 correctly iff

Ck1,kj
= log


1 +

Pk

d2δ
k1,kj

1 + Pint


 ≥ αk log(N) (4)

where Pint is the interference caused by the nodes in other
sets which are simultaneously transmitting to their neighbors.

Let dk1,kj
= N−γk1,kj where γk1,kj

is positive. Let dmin be
the distance of the closest interfering node from node kj . It is
easy to see that dmin ≥ π

2A . Assuming that all the interfering
nodes are at a distance dmin from node kj , the interference
experienced by the node kj can be bounded as

Pint ≤ 1
d2δ

min

A∑
m=1
m �=k

Pm ≤ A2δPtotal.

4A process j is said to be active if the power allocated to it Pj �= 0.

Thus, we get a sufficient condition for the node kj to success-
fully decode the transmission of node k1 to be

Ck1,kj
≥ log

(
1 +

PkN2δγk1,kj

1 + A2δPtotal

)
≥ αk log(N)

⇒ log

(
PkN2δγk1,kj

A2δPtotal

)
≥ αk log(N)

⇒ 2δγk1,kj
≥ αk − logN

(
Pk

A2δPtotal

)

⇒ γk1,kj
≥ αk

2δ
− 1

2δ
logN

(
Pk

A2δPtotal

)
. (5)

Hence all nodes within a distance of N−γk1,kj will be able
to decode the transmission of node k1 successfully. Thus the
number of nodes that successfully decode the transmission of
node k1 can be lower bounded by 1

2π N (1−γk1,kj
).

In the second time slot, all the nodes in the set k, which
had successfully decoded the transmission of node k1 in the
first time slot, cooperate with node k1 in a beamforming
configuration, with equal power assigned to every node, to
deliver the information to collector node “N + k” (for all
k ∈ {1, . . . , A}). A sufficient condition for the (N + k)th

collector node to successfully decode the transmissions of the
nodes in the kth set is (see Appendix)

log


1 +

PkN
(1−γk1,kj

)

2πd2δ
max

1 + Pint


 ≥ αk log(N),

where

Pint =
A∑

m=1
m �=k

Pm ≤ Ptotal.

⇒ log

(
PkN (1−γk1,kj

)

2πd2δ
maxPtotal

)
≥ αk log(N)

⇒ 1 − γk1,kj
+ logN

(
Pk

Ptotal

)
≥ αk.

In the best case (when γk1,kj
satisfies (5) with equality), we

get

1 − αk

2δ
+

1
2δ

logN

(
Pk

A2δPtotal

)
+ logN

(
Pk

Ptotal

)
≥ αk

⇒ αk ≤ 2δ

2δ + 1
logN

(
N

A

)
+ logN

(
Pk

Ptotal

)
. (6)

Since it took two time slots to deliver αkTs log(N) bits
of the kth process to the corresponding collector node, the
throughput provided by the proposed scheme to the kth

process is Rk = αk

2 log(N).
The final step is to symmetrize the transmission scheme by

assigning every two consecutive time slots to different sets
of sensor nodes. For the case when A = 1 (the many-to-one
channel), the achievability condition (6) reduces to α1 ≤ 2δ

2δ+1 ,
which matches the result obtained in [1].
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It is easy to see from (6) that αk can be positive only if the
power allocated for observing the kth process Pk satisfies

Pk > Ptotal

(
A

N

) 2δ
2δ+1

(7)

It is important to note that even an equality in (7) makes
the transport capacity w.r.t the kth process to scale as Θ (1)
instead of Θ (log(N)).

We next find the power allocation strategy which maximizes
the total achievable rate

(∑A
k=1 αk

)
using the Lagrange

constrained optimization method.

J =
∑

k

αk + λ(
∑

k

Pk − Ptotal).

Differentiating w.r.t Pk and equating to 0, we get

Pk = − logN (e)
λ

.

Using the power constraint, we get

λ = −A logN (e)
Ptotal

⇒ Pk =
Ptotal

A
.

Thus, an equal distribution of power among the observed
processes maximizes the total achievable rate. In this case,
the achievability condition in (6) reduces to

αk ≤ 2δ

2δ + 1
−
(

4δ + 1
2δ + 1

)
logN (A) ∀k = {1, 2, . . . , A}

(8)
We are now ready to derive the following result regarding

the number of processes that can be simultaneously observed
by the network.

Theorem 5: The dense multi-modal network can observe
Nβ identical processes simultaneously, such that the transport
capacity w.r.t each process is α

2 log (N), where

β ≤ 2δ

4δ + 1
− α(2δ + 1)

4δ + 1
.

Proof: Let A = Nβ . Then the achievability condition in
(8) reduces to

α ≤ 2δ

2δ + 1
−
(

4δ + 1
2δ + 1

)
β.

Thus, we obtain an upper bound on the exponent β of the
number of processes simultaneously observable by the network
as

β ≤ 2δ

4δ + 1
− α(2δ + 1)

4δ + 1
.

When α = 0, we find that β ≤ 2δ
4δ+1 . Thus, it is possible

to observe upto N( 2δ
4δ+1 ) processes and achieve Θ (log(N))

capacity for each process, using the proposed scheme.

A few remarks on the achievability results are now in order.

1) If the positions of the sensor nodes are chosen according
to a uniform i.i.d assumption, rather than uniformly, it
is easy to see that our results hold with high probability
as N → ∞.

2) Our path loss model is based on the far field wave
propagation assumption. We realize that this model may
not be very accurate since the far field assumption does
not hold when the transmitter and receiver are very
close to each other. Thus, using more refined path loss
models is a possible venue for future work. However,
even with more refined models, one would still expect
that, in dense networks, every node can distribute its
information to its neighbors at minimal cost. Hence, we
conjecture that the main idea of utilizing the proximity
of source nodes in dense networks to facilitate efficient
cooperation protocols will play a significant role with
these models as well.

3) It was shown in [1] that spatial resuse does not factor
prominently in the many-to-one scenario since it does
not resolve the competition for the same destination,
which is the dominant factor that dictates the Θ (log(N))
scaling law of the total transport capacity. However,
in the multi-modal case, the availability of multiple
collector nodes resolves this issue and hence spatial
reuse factors prominently, as is evident from the proof of
Theorem 3, wherein different sets of nodes are allowed
to reuse the bandwidth for transmitting to different col-
lector nodes. Infact the spatial frequency reuse results in
an increased total transport capacity of O

(
Nβ log (N)

)
for the proposed scheme, as opposed to a total transport
capacity of Θ (log(N)) for the many-to-one scenario.

4) The scheme we have proposed is simple in the sense
that the receivers treat all the interference as noise.
However, we do not claim that our scheme achieves
the optimal total transport capacity of the multi-modal
network. It may be possible to observe more number
of processes using sophisticated multi-user detection
schemes, where the receivers have more interference
cancellation capabilities.

V. THE OBSERVABILITY OF SPATIAL RANDOM PROCESSES

In this section, we investigate the effect of the correlation
between the observations of a particular process at the
different sensors on the operation of wireless multi-modal
sensor networks. Specifically, we use Theorems 3 and 5
along with the necessary and sufficient conditions for the
observability of random processes, established in [1], to show
that it is possible to observe O

(
Nβ
)

Gaussian spatially
bandlimited processes with only finite total average power.
Throughout this section, we focus on the asymptotic scenario
as N → ∞. For completeness, we repeat the definitions and
the conditions of observability from [1].

Definition 6: A discrete random sequence is said to be
observable if it can be detected at the collector node with
arbitrarily small probability of error for a certain allocation
of a finite bandwidth and a finite total average power to the
network.
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It was shown in [1] that a spatial random process k is
observable iff

H (uk1[l], uk2[l], ..., ukN [l]) ≤ Θ (log(N)) , (9)

where the random variables {ukj [l]} are assumed to be
discrete and H(., ., .) refers to the joint entropy.

Definition 7: A continuous random process is said to be
observable if it can be estimated at the collector node with a
non-zero mean square error for a certain allocation of a finite
bandwidth and a finite total average power to the network.

It was shown in [1] that all Gaussian spatially bandlimited
processes can be observed by dense wireless sensor networks
as N → ∞, since the quantized random variables {vkj [l]}
satisfy the upper bound given in (9). This result was shown to
hold even when a source/channel separation scheme, compris-
ing of a lossy source encoder (single dimensional quantization
followed by Slepian-Wolf distributed coding) concatenated
with the cooperative transmission strategy of [1], is used.

Combining the results of Theorems 3 and 5 with these
observability conditions, we establish our main result.

Theorem 8: The dense multi-modal network is capable of
observing Nβ identical Gaussian spatially bandlimited pro-
cesses as N → ∞, where

β ≤ 2δ

4δ + 1
− α(2δ + 1)

4δ + 1

and α depends on the spatial bandwidth of the process.
Moreover, this result holds even if we restrict ourselves to
the source/channel separation scheme comprising of a lossy
source encoder (single dimensional quantization followed
by Slepian-Wolf distributed coding) concatenated with the
proposed cooperative transmission strategy.

Proof: From Theorem 5, we know that Nβ identical
processes can be observed simultaneously by the dense multi-
modal network, such that the transport capacity w.r.t each of
the processes is α

2 log(N), where β ≤ 2δ
4δ+1 − α(2δ+1)

4δ+1 . It was
shown in [3] that for a Gaussian spatially bandlimited process,
the joint entropy of the quantized random variables {vkj [l]}
is given by

H (vk1[l], ..., vkN [l]) ≈
√

2b log
(

cN√
2b

)
as N → ∞,

where b = 4a2π2
∫ f0

−f0
f2SR(f)df < ∞ and c is a constant

that depends on the quantization step. Here f0 is the spatial
bandwidth of each of the observed Gaussian processes. Thus,
the joint entropy of the quantized random variables satisfies

H (vk1[l], ..., vkN [l]) ≤ α

2
log(N),

where α is a function of f0. Since each of the Nβ processes
satisfies the observability condition (9), all of them are ob-
servable by the network.

A few remarks are now in order

1) While Theorem 8 is stated for bandlimited processes,
clearly the result extends to other processes that gen-
erate ≤ Θ (log(N)) bits per transmission symbol. The
Gaussian process with R(d) = e−d2

given in [3], is one
example of such processes.

2) While we have assumed the observed processes to
be identical, our results clearly extend to the case of
non-identical observed processes which require different
transmission rates.

VI. CONCLUDING REMARKS

In this paper, we have established the gains possible with
cooperation between the sensor nodes. We characterized an
achievable rate region for dense multi-modal wireless sensor
networks using a scheme that exploits the proximity of sensors
to allow for efficient cooperation. We have shown that it is
possible to observe O

(
Nβ
)

processes simultaneously, and
still achieve a transport capacity of Θ (log(N)) for each of
the processes, with a large number of sensors N and a fixed
total average power. We then used the necessary and sufficient
conditions for observability, from [1], to show that a dense
multi-modal sensor network can observe O

(
Nβ
)

spatially
bandlimited Gaussian processes simultaneously. Extending
these results to fading channels and using more refined path
loss models are possible venues for future work.

APPENDIX

Here we derive an upper bound on the interference experi-
enced at the (N + k)th collector node during the second time
slot. During this slot, the nodes in each set m cooperate among
themselves to beamform to the (N +m)th collector node. Let
xm (m ∈ {1, . . . , A}) denote the signal transmitted by each
of the 1

2π N (1−γm1,mj
) sensor nodes in the set m, which had

successfully decoded the transmission of node m1 in the first
time slot. Now, the signal received at the (N + k)th collector
node is given by

yN+k[l] =
A∑

m=1
m �=k

1
2π N

(1−γm1,mj
)∑

nm=1

xm[l]ej(θnm,N+k−θnm,N+m)

+
N (1−γk1,kj

)

2π
xk[l],

where the second term is due to the beamforming by the sensor
nodes of the kth set. Since all the transmitted signals {xm} are
chosen from a Gaussian codebook and the noise is Gaussian,
the received signal yN+k is also Gaussian distributed. The
interference experienced at the (N + k)th collector node is
given by

Pint = E

∣∣∣∣∣∣∣∣∣∣
A∑

m=1
m �=k

1
2π N

(1−γm1,mj
)∑

nm=1

xm[l]ej(θnm,N+k−θnm,N+m)

∣∣∣∣∣∣∣∣∣∣

2
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=
A∑

m=1
m �=k

E

∣∣∣∣∣∣∣
1
2π N

(1−γm1,mj
)∑

nm=1

xm[l]ej(θnm,N+k−θnm,N+m)

∣∣∣∣∣∣∣
2

(since each of the terms in the outer summation has zero mean
and the terms are independent of each other)

=
A∑

m=1
m �=k

E |xm[l]|2
∣∣∣∣∣∣∣

1
2π N

(1−γm1,mj
)∑

nm=1

ej(θnm,N+k−θnm,N+m)

∣∣∣∣∣∣∣
2

.

As N → ∞, the law of large numbers suggests that the term∣∣∣∣∣∣∣
1
2π N

(1−γm1,mj
)∑

nm=1

ej(θnm,N+k−θnm,N+m)

∣∣∣∣∣∣∣
2

converges in probability to its expected value. Thus the in-
terference at the (N + k)th collector node Pint converges in
probability, as N → ∞, to

A∑
m=1
m �=k

E |xm[l]|2 E

∣∣∣∣∣∣∣
1
2π N

(1−γm1,mj
)∑

nm=1

ej(θnm,N+k−θnm,N+m)

∣∣∣∣∣∣∣
2

.

Hence for large N , the interference Pint is given by

A∑
m=1
m �=k

E |xm[l]|2
1
2π N

(1−γm1,mj
)∑

nm=1

E
∣∣∣ej(θnm,N+k−θnm,N+m)

∣∣∣2

(since each of the terms in the summation has zero mean and
the terms are independent of each other)

⇒ Pint =
A∑

m=1
m �=k

Pm

1
2π N (1−γm1,mj

)

1
2π N

(1−γm1,mj
)∑

nm=1

1

⇒ Pint =
A∑

m=1
m �=k

Pm ≤ Ptotal.

The transport capacity of the kth process is given by (e.g. [4])

CN (k) = log


1 +

PkN
(1−γk1,kj

)

2πd2δ
max

1 + Pint




For large N , the capacity can be given as

C(k) = lim
N→∞

CN (k) = log


1 +

PkN
(1−γk1,kj

)

2πd2δ
max

1 + limN→∞ Pint




(due to the continuity of the log(1 + x) function). Thus, for
large N , the capacity converges in probability to

C(k) → log


1 +

PkN
(1−γk1,kj

)

2πd2δ
max

1 +
∑A

m=1
m �=k

Pm


 ,

which is independent of the values of {θi,j} of any particular
realization.
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