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Abstract— A cross-layer approach is adopted for the design of
finite-user symmetric random access wireless systems. Instead
of the traditional collision model, a more realistic physical
layer model is adopted. An Incremental Redundancy Automatic
Repeat reQuest (IR-ARQ) scheme, tailored to jointly combat
the effects of user collisions, multi-path fading, and channel
noise, is proposed. The diversity-multiplexing-delay tradeoff of
the proposed scheme is analyzed for fully-loaded queues, and
compared with that of the Gallager tree algorithm for collision
resolution and the network-assisted diversity multiple access
(NDMA) protocol of Tsatsanis et al.. The fully-loaded queue
model is then replaced by one with random arrivals, where the
three protocols are compared in terms of the stability region
and average delay. Overall, our analytical and numerical results
establish the superiority of the proposed IR-ARQ scheme and
reveal some important insights. For example, it turns out that
the performance is optimized, for a given total throughput, by
maximizing the probability that a certain user will send a new
packet and minimizing the transmission rate employed by each
user.

I. BACKGROUND

We consider a random access system with symmetric users
who compete to communicate with a common receiver, or
a base station. Traditional approaches for analyzing such
systems use the simplified collision model ([17] and references
therein), which assumes that the base station cannot decode
messages when a collision occurs (i.e., when more than one
user transmits at the same time), and a message is always
received error-free when a single user transmits. Under this
model, several protocols, which avoid collisions and rely on
single-user transmissions, have been proposed in the literature.
Examples of such protocols include the Gallager tree algo-
rithm (GTA) [10] and carrier sense multiple access/collision
detection (CSMA/CD). The collision model, however, does
not adequately capture some important characteristics of the
wireless channel, e.g., multi-path fading, and ignores certain
physical layer (PHY) properties like multi-packet reception
(MPR) [12]. Recently, researchers have started to focus on
cross-layer approaches that exploit the properties of the wire-
less medium to improve the performance of random access
systems. For example, Naware et al [12] analyzed the stability
and average delay of slotted-ALOHA based random access
channels with MPR at the base station. This analysis, however,
has abstracted out the physical layer parameters by using
MPR reception probabilities. Another example is [3] where
Tsatsanis et al. have proposed a random access protocol, called
network-assisted diversity multiple access (NDMA), which

uses the time diversity of repetition Automatic Repeat reQuest
(ARQ) for collision resolution. As argued in the sequel, this
protocol results in a significant loss in throughput owing to
repetition coding. In [2], Caire et al studied the benefits of
using an ARQ protocol with incremental redundancy (IR)
transmissions (instead of repetition ARQ), and analyzed the
throughput of the IR-ARQ scheme for the Gaussian collision
channel [1] with fully-loaded1 queues and single-user decoders
at the base station. By adopting the fully-loaded queuing
model, this work ignores the stability issues that arise in prac-
tical random access systems with random arrivals. Moreover,
the single-user decoders used in this work are sub-optimal
and result in considerable throughput losses. To overcome the
limitations of these previous works, we adopt a system model
that incorporates more realistic physical layer properties, and
propose a new random access protocol based on IR-ARQ with
joint decoding at the base station, in the next section.

II. ARQ RANDOM ACCESS

In this section, we introduce our system model and briefly
review two existing random access schemes; namely, the
GTA and the NDMA protocol. To the best of the author’s
knowledge, these two approaches represent the state of the art
in the design of random access networks. More specifically, the
GTA belongs to the class of tree collision resolution techniques
whereas the NDMA serves as a representative for the class of
collision resolution schemes that employ repetition ARQ. We
then propose our new IR-ARQ protocol that overcomes the
limitations of these existing protocols.

A. System Model

We consider a K-user symmetric random access channel
with M antennas at each user and N antennas at the re-
ceiver (base station). We assume that all the users’ channels
experience Rayleigh-flat and long-term static fading where
the channel fading coefficients remain constant during all the
ARQ rounds corresponding to an information message. We
consider individual power constraints on the users, and denote
the received SNR of a user’s signal by ρ. Time is slotted and
a slot is composed of T channel uses. In order to control
the number of users colliding, each user selects the slots for
transmission according to the probability-pt rule: in every slot,
each user having a packet to transmit transmits a signal burst

1Each queue has infinite packets for transmission.
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with probability pt and does not transmit with probability
1−pt, where 0 < pt ≤ 1. We assume that the BS can perfectly
identify the set of active users (by assigning a different control
channel to each user). We initially assume fully-loaded queues
in Section III, and then relax this assumption and consider a
queuing system with random arrivals in Section IV.

B. Gallager Tree Algorithm (GTA)

This algorithm was proposed by Gallager [10] for the
random access channel under the simplified collision model.
The extension of this algorithm to our channel model mainly
includes the probability-pt rule and an explicit assumption
that the base station does not even try to decode the users’
messages in the case of a collision. We describe the extended
GTA as follows. The traffic in the channel is interpreted as
a flow of collision resolution (CR) epochs. At the beginning
of each CR epoch, each user which has packets to transmit,
uses the probability-pt rule to decide whether it should (or
should not) transmit in that epoch. If none of the users choose
to transmit, the slot remains idle and a new CR epoch starts
from the following slot. If only one user chooses to transmit,
then it is allowed to transmit in the current slot and a new CR
epoch begins from the following slot. But when a collision
occurs, i.e., more than one user chooses to transmit in the
current slot, the system enters into a CR mode, and only the
users that participated in the collision at the beginning of a
CR epoch are allowed to transmit until the end of that CR
epoch. The colliding users are randomly split into two different
groups, say the Left(L) and Right(R) groups. We assume that
the base station uses a fair random split, wherein each user
has an equal probability of joining either of the groups. The
users in L transmit in the next slot. Based on the outcome
of this transmission, the algorithm decides whether to include
the users in R in the current CR epoch or not. If L has only
one user, the users in R will transmit in the following slot.
Meanwhile, if L has no users (idle slot), then the users in R are
immediately split fairly into two sub-groups, without wasting a
slot that is sure to result in a collision (level skipping). Finally,
if there is a collision (L has multiple users), then the users in R
are removed from the current CR epoch and have to wait until
the next CR epoch to transmit according to the probability-
pt rule (tree pruning). The algorithm continues in the same
fashion until all the users who have initiated the CR epoch and
not been pruned, get a slot to transmit their packets without
collisions. This marks the end of the current CR epoch and a
new CR epoch begins from the next slot. This tree algorithm
is known to be very efficient and achieves a maximum stable
throughput of 0.487 with an infinitely large number of users.
A more detailed description of this algorithm is provided in
[9], [10], [11].

C. Orthogonal Network-Assisted Diversity Multiple Access
(O-NDMA)

The NDMA protocol was proposed by Tsatsanis et al. [3]
and relies on the use of time diversity through a repetition

ARQ scheme to resolve collisions between users. At the begin-
ning of each CR epoch, the transmission of each user will be
determined by the probability-pt rule as in the GTA protocol.
If none or only a single user choose to transmit, then the next
CR epoch starts from the following slot as before. However,
when k (≥ 2) users transmit, then all those users repeat their
transmissions in the next (k−1) slots. At the end of k slots, the
BS is assumed to be able to reliably decode the k packets, and
a new CR epoch begins from the next slot. On the other hand,
in [4], Zhang et al. proposed a new variant of NDMA which
does not rely on time diversity to resolve/detect collisions. This
variant, named B-NDMA, relies on a blind signal separation
method utilizing a Vandermonde mixing matrix constructed
via specially designed user retransmissions. In B-NDMA, the
detection and resolution of a k-user collision require (k + 1)
slots. However, in this paper, we assume the use of separate
control channels for collision detection; which allows for a
slightly more efficient version than the B-NDMA protocol,
named orthogonal NDMA (O-NDMA), which requires only k
slots to resolve a k-user collision, without relying on temporal
diversity. The behavior of users in O-NDMA is the same
as that in NDMA, with the only difference that in case of
a k-user collision, user i transmits its symbols scaled by
(wi)� = (e

j2πi
k )�, where i = 1, · · · , k and j =

√−1, in the
�-th slot after the initial collision. At the end of the kth slot,
the BS utilizes the orthogonal structure constructed using the
wi’s to decompose the joint decoding problem into k single-
user problems. For example, suppose that user 1 and user
2 have collided (k = 2), and user i’s codeword is xi, for
i = 1, 2. Then, the BS coordinates the users so that user 1
repeats x1 whereas user 2 transmits −x2, in the slot following
the collision. To decode user 1, the BS calculates the sum
of the received vectors in the two slots, while to decode
user 2, it takes the difference (i.e., matched filtering). This
way, the multi-user interference is removed, and single-user
decoders can be utilized to recover both packets. It is worth
noting that O-NDMA requires symbol-level synchronization to
facilitate the interference cancellation described above. Hence,
our results for O-NDMA can be interpreted as optimistic upper
bounds on the performance of repetition based random access
protocols.

However, O-NDMA is still sub-optimal for two reasons.
First, the BS might be able to decode2 the messages of
k colliding users in less than k time slots. Conversely, it
is also possible that k time slots are insufficient for the
successful decoding of the k packets. Thus, such a static
strategy may result in a throughput loss. Second, O-NDMA is
essentially a repetition based collision resolution mechanism.
Although this results in a low-complexity decoder at the BS,
the throughput performance is highly sub-optimal, as shown
rigorously in the sequel. A significant improvement in the
throughput can be achieved by allowing for IR transmissions

2Multiple messages can be jointly decoded in a single transmission block,
with an arbitrary small error probability, if a rate-tuple lies within the capacity
region of the channel and a sufficiently large block length is used [18].
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from the colliding users within the CR epoch, and using joint
decoding, across ARQ rounds and users, at the base-station
(as discussed next).

D. Proposed Incremental Redundancy ARQ (IR-ARQ) Proto-
col

To overcome the disadvantages of the existing protocols, we
propose a new IR-ARQ random access protocol operating as
follows. Each user encodes an information message (packet)
of BT bits using a codebook of length-LT codewords, where
L is an integer denoting a deadline constraint (i.e., a constraint
on the maximum number of allowed ARQ rounds). Codewords
are divided into L sub-blocks of length T . At the beginning
of each CR epoch, the users which have packets to transmit,
choose to transmit or not based on the probability-pt rule as
before. Once a user chooses to transmit in a particular slot,
it transmits its first T symbols during that slot. We adopt an
IR-ARQ transmission strategy and use a joint decoder that
decodes the received observations both across users and ARQ
rounds. If the receiver decodes the transmitted message(s),
it feeds back an ACK; otherwise, it returns a NACK. On
receiving an ACK, the CR epoch is terminated and a new
CR epoch starts from the next slot. Thus a CR epoch can be
defined as the time between two successive ACKs from the
receiver3. On the other hand, if a NACK is received, each of
the colliding users sends its second sub-block of T codeword
symbols in the next slot, while all the other users remain silent.
Thus only the users who transmit at the beginning of a CR
epoch are allowed to transmit until the end of that epoch. The
ACK/NACK rule applies in a similar manner until the Lth slot
is reached. In this case, the receiver sends an ACK regardless
of its decoding result. While decoding, the base-station uses
all the observations received up to the current ARQ round. If
a user’s message is decoded after � ARQ rounds, the effective
coding rate becomes R/� bits per channel use (BPCU), where
R = BT /T denotes the rate of the first round. Here we assume
that the base station can perfectly identify the set of active
users (by assigning a different control channel to each user).
Note that the deadline constraint bounds the transmission delay
of this protocol by L slots.

III. DIVERSITY-MULTIPLEXING-DELAY TRADEOFF

(DMDT)

In this section, we analyze the DMDT of the proposed
IR-ARQ protocol and contrast it with the two benchmark
protocols (i.e., GTA and NDMA) under the assumption of
fully-loaded queues. The “fully-loaded” assumption allows
for analyzing the maximum achievable throughput without
focusing on the stability and delay issues, for the moment.

A. Definitions

We borrow the notion of DMDT from [6]. This notion
is a generalization of the Zheng-Tse diversity-multiplexing
tradeoff (DMT) which characterizes the fundamental tradeoff

3This definition requires the base station to return an ACK message after
an idle slot.

of fading channels between throughput and reliability in the
high SNR regime [7]. In particular, we consider a family of
ARQ protocols where the size of the information messages
BT (ρ) depends on the operating SNR ρ. These protocols are
based on a family of space time-codes {Cρ} with a first round
rate of R(ρ) = BT (ρ)/T and an overall block length TL.
Similar to [6], the delay constraint is on the maximum number
of ARQ rounds to be less than or equal to L. For this family
of protocols, we define the first round multiplexing gain r as

r = lim
ρ→∞

R(ρ)
log ρ

, (1)

and the effective ARQ multiplexing gain re as

re � lim
ρ→∞

ηFL(ρ)
log ρ

. (2)

Here ηFL(ρ) is the long-term average throughput of the ARQ
protocol in the random access channel with fully-loaded (FL)
queues, i.e.,

ηFL(ρ) = lim
s→∞

b(s)
sT

, (3)

where s is the slot index and b(s) is the total number of
message bits transmitted up to slot s. Note that the message
bits received in error at the base station are also counted in
b(s). The effective ARQ diversity gain is defined as

d = − lim
ρ→∞

log PE(ρ)
log ρ

, (4)

where PE(ρ) is the system error probability, which is defined
as the probability that at least one of the users’ messages is
not correctly decoded by the base station. In the symmetric
random access channel, the diversity gain obtained from (4)
is the same as the diversity gain of each individual user, since

PE(i)(ρ) ≤ PE(ρ) ≤
K∑

j=1

PE(j)(ρ), ∀i ∈ {1, · · · ,K} , (5)

where PE(i)(ρ) is the error probability of the ith user in
the system. In summary, the DMDT of a certain protocol
characterizes the set of achievable tuples (d, re, L) (here, we
observe that our results are information theoretic in the sense
that we assume the use of random Gaussian codebooks [7]).

In our analysis, we will make use of the results of Viswanath
et al. on the diversity-multiplexing tradeoff of coordinated
multiple access channels [8]4. In the sequel, we denote the
diversity gain of the coordinated multiple access channel with
k users as dMAC

k (r), which is given by

dMAC
k (r) =

{
dM,N (r), r ≤ min{M, N

k+1}
dkM,N (kr), r ≥ min{M, N

k+1}
, (6)

where dM,N (r) is the diversity gain of the point-to-point chan-
nel with M transmit and N receive antennas, and multiplexing
gain r given in [7].

4Coordinated multiple access channels differ from our model in the fact
that the access mechanism is controlled by the base-station.
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In the ARQ setting, we denote the event that a NACK
is transmitted in the �th ARQ round, when k users are
transmitting simultaneously, by Āk(�), for � = 1, · · · , L − 1,
and the error event in the Lth round by Āk(L). We also denote
the complement of Āk(�) by Ak(�). We define

αk(�) � Pr
(Āk(1), · · · , Āk(� − 1),Ak(�)

)
(7)

and

βk(�) � Pr
(Āk(1), · · · , Āk(�)

)
, for � = 1, · · · , L, (8)

where, by definition, we let βk(0) = 1, for k = 1, · · · ,K.
Note that αk(�) is the probability that the length of a CR
epoch is � (slots), given that k users have collided initially.
For notational convenience, we denote the pmf of a binomial
random variable with population K and probability of success
p by,

B(K, k, p) �
(

K

k

)
pk(1 − p)K−k . (9)

B. Main Results

First, we characterize the DMT of GTA [10] (note that we
do not have deadlines in this model).

Proposition 1: The DMT for GTA with a given pt ∈ (0, 1]
is

dGTA(re) = dMAC
1

(∑K
k=0 B(K, k, pt)Xk∑K
k=0 B(K, k, pt)Jk

re

)
, (10)

where Xk and Jk can be found by the following recursions:

Xk = 1 + B(k, 0, 0.5)Xk + B(k, 1, 0.5)(1 + Xk−1)

+
k∑

i=2

B(k, i, 0.5)Xi , (11)

and

Jk = B(k, 0, 0.5)Jk + B(k, 1, 0.5)(1 + Jk−1)

+
k∑

i=2

B(k, i, 0.5)Ji , (12)

for k = 2, 3, · · · , with X0 = X1 = 1 and J0 = 0, J1 = 1.
Proof: Since errors occur only when a single user

transmits, the diversity gain is given by dMAC
1 (r). We observe

that CR epochs are renewal intervals, and we apply the
renewal-reward theorem [16] to analyze the long-term average
throughput:

ηFL = lim
s→∞

b(s)
sT

=
E[R]
E[X ]

, (13)

where X and R are random variables representing the number
of channel uses and the number of bits transmitted in a renewal
interval, respectively. Let Jk denote the average number of
users who transmitted in a CR epoch (without being pruned)
given that k users have collided initially as, and the average
length of the CR epoch conditioned on k as Xk. Then, (2) and
(13) give

re =
∑K

k=0 B(K, k, pt)Jk∑K
k=0 B(K, k, pt)Xk

r, (14)

and thus we have (10).
Now, we find the recursions for Xk and Jk similarly as

done in [11]. We first consider Xk. It is easy to see that X0 =
X1 = 1. For k ≥ 2, we make the following observations.
If L has zero packets, then we have spent two slots for the
initial collision and the idle slot; but the level skipping prevents
us from an obvious collision in R. On the other hand, if L
has one packet, then we have spent two slots for the initial
collision and the transmission of the one packet. Finally, if
L has i (≥ 2) packets, then we have spent one slot for the
initial collision, and (k − i) packets will be pruned (thus it is
equivalent to have another initial collision of i packets after the
original collision). These observations lead us to the following
recursion:

Xk = B(k, 0, 0.5)(1 + Xk) + B(k, 1, 0.5)(2 + Xk−1)

+
k∑

i=2

B(k, i, 0.5)(1 + Xi). (15)

It is easy to see that (15) is equivalent to (11). Next, we
consider Jk. It is obvious that J0 = 0 and J1 = 1. For k ≥ 2,
we make the following observations. If L has zero packets,
then no packets will be pruned. On the other hand, if L has
one packet, then one packet will be transmitted (or (k − 1)
packets will remain). Finally, if L has i (≥ 2) packets, then
(k−i) packets will be pruned (or i packets will remain). These
observations lead us to the recursion (12).

Since the GTA protocol is inspired by the simplified colli-
sion model, the main idea is to assign a single slot exclusively
for transmission of each colliding user (that was not pruned
by the algorithm). The resulting DMT, therefore, is given
in terms of a single-user performance, i.e., dMAC

1 (.) and
it is upper-bounded by dMAC

1 (re). The main drawback of
GTA is the relatively large number of slots needed to resolve
each collision, which translates into a loss in the effective
multiplexing gain, i.e., the argument of dMAC

1 (.) in (10).
It is now easy to see that GTA cannot achieve the full
effective multiplexing gain of the multiple access channel,
i.e., min{KM, N}. An example highlighting this fact will
be provided in the later part of this section. On the other
hand, the DMT in (10) reveals the performance dependence
on pt (and r), which implies the possibility of maximizing
the diversity gain by choosing the appropriate values, p∗t and
r∗ for each re ∈ [0,min{KM, N}). At the moment, we do
not have a general analytical solution for this optimization
problem. However, the solution for the special case of two
users is obtained in Section III-C. We also note that the DMT
of CSMA/CD is again upper-bounded by the single-user DMT,
since CSMA/CD also tries to assign a single user to each slot
and thus the throughput cannot exceed 1 packet/slot.

Next, we characterize the optimal DMT for the O-NDMA
protocol (Again we do not have a delay parameter in the
tradeoff since the number of ARQ rounds is always equal
to the number of colliding users).

Proposition 2: The optimal DMT for O-NDMA is,

dONDMA(re) = dMAC
1 (re) . (16)
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Proof: The DMT for O-NDMA with a given pt ∈ (0, 1]
and r is found as

dONDMA(re) = dMAC
1 (r) (17)

where

r =
Kpt + (1 − pt)K

Kpt
re, (18)

utilizing the average throughput results in [3], and noting that
the average SNR of each single-user decoder is still ρ. Then,
it is easy to find that the optimal values (r∗, p∗t ) = (re, 1),
which yields (16).

The matched-filter-like structure utilizing the orthogonality
of transmissions over different slots allows the O-NDMA
protocol to achieve the single-user performance, as we see
from (17). Furthermore, p∗t = 1 ensures that the throughput is
maximized, and the optimal DMT is given by (16). By com-
paring the expressions in (10) and (16), we realize that the O-
NDMA protocol achieves a larger diversity gain, as compared
with the GTA protocol, for any re less than min{M,N}.

Finally, the optimal DMDT of the IR-ARQ random access
protocol is characterized in the following theorem.

Theorem 3: The optimal DMDT for the IR-ARQ protocol
is,

dIR(re, L) = dMAC
K

( re

KL

)
. (19)

Proof: First, we assume an asymptotically large block
length T → ∞ to allow our error correction (and detection)
scheme to operate arbitrarily close to the channel fundamental
limits. An application of the renewal-reward theorem [16]
gives

ηFL =
ptKR

1 +
∑K

k=1 B(K, k, pt)
∑L−1

�=1 βk(�)
. (20)

In addition, given that joint typical-set decoders [18], which
have an inherent ability to detect errors, are used for the
channel output over slots 1 to � in ARQ round �, extending
the results in [6] and [8], the probability of error Pe is upper-
bounded by,

Pe ≤
K∑

k=1

B(K, k, pt)βk(L). (21)

Noting that in the high SNR regime βk(�) approaches

lim
ρ→∞ βk(ρ, �) = 1

(
r > min

{
�M,

�N

k

})
(22)

�
{

0, r < min{�M, �N
k }

1, r > min{�M, �N
k } , (23)

we find the DMDT with a given pt ∈ (0, 1] as

dIR(re, L) = dMAC
K

( r

L

)
, (24)

where r can be obtained from re using the relation (for 0 ≤
r ≤ min{M,N}),

re =
ptKr

1 +
∑K

k=1 B(K, k, pt)
∑L−1

�=1 1
(
r > min{�M, �N

k }) ,

(25)

from (20–23), and the results in [6], [8]. Finally, we find the
optimal values (r∗, p∗t ) = ( re

K , 1), which gives (19). A detailed
proof will be presented in the journal version of this paper
[15].

Two remarks are now in order. First, we elaborate on
the intuitive justification for the optimal values (r∗, p∗t ) =
( re

K , 1) for the IR-ARQ protocol. In the asymptotic case with
ρ → ∞, the error probability is dominated by the worst
case K-user collision for any pt ∈ (0, 1], which does not
depend on ρ by definition. This implies that choosing pt = 1
will maximize the average throughput, without penalizing
the asymptotic behavior of the error probability. Now with
pt = 1, choosing r∗ = re

K < min{M, N
K } will result in an

effective multiplexing gain equal to re and will minimize the
number of rounds needed to decode the colliding messages,
since each user is transmitting at a small rate. Furthermore,
it is clear that with this choice of r∗, we can achieve any
desired effective multiplexing gain less than min{KM,N}
(the degrees of freedom in the coordinated multiple access
channel). Next, comparing Propositions 1, 2 and Theorem 3,
it is straightforward to verify that the DMT of the IR-ARQ
protocol is always superior to that of the GTA and O-NDMA
protocols. This advantage of IR-ARQ is a manifestation of
the ARQ diversity resulting from the IR transmission and
joint decoding. More specifically, the ARQ diversity scales
down the effective multiplexing in the right hand side of (19),
and hence, results in an increased diversity advantage (since
dMAC

K (.) is a decreasing function in its argument). The O-
NDMA protocol does not allow for efficiently exploiting the
ARQ diversity due to the sub-optimality of repetition based
ARQ.

C. Examples

We numerically illustrate the gain offered by the IR-ARQ
protocol, as compared with the GTA and the NDMA protocol
for two-user random access channels.

1) Two-User Scalar Random Access Channels: We con-
sider the single-antenna 2-user random access channel, i.e.,
M = N = 1 and K = 2. Substituting these parameters
in Proposition 1, we obtain the DMT for the GTA protocol
as, dGTA(re) = dMAC

1

(
1+3p2

t

2pt
re

)
= 1 −

(
1+3p2

t

2pt

)
re.

In order to maximize the effective multiplexing gain that
achieves nonzero diversity gain, we need to choose pt = 1√

3
,

which yields the optimal DMT for GTA as dGTA(re) =
1 − √

3re, 0 ≤ re < 1√
3

. The optimal DMTs for O-NDMA
and IR-ARQ are obtained from Proposition 2 and Theorem 3.
Fig. 1 compares the tradeoffs of the three protocols where the
IR-ARQ protocol is shown to dominate our two benchmarks,
with both L = 1, 2. Even though O-NDMA achieves the
nominal single-user DMT without multi-user interference,
i.e., d(re) = 1 − re,∀re < 1, it is still worse than IR-ARQ,
since it wastes slots to facilitate single-user decoding and relies
on repetition ARQ. In addition, as L increases from 1 to 2,
the DMDT of IR-ARQ improves, as expected.

2) Two-User Vector Random Access Channels: We con-
sider a 2-user vector random access channel with M = 1 and
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Fig. 1. Diversity-multiplexing tradeoff for various two-user scalar
random access systems
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Fig. 2. Diversity-multiplexing tradeoff for various two-user vector
random access systems

N = 2. By allowing multiple antennas at the BS, the total
degrees of freedom of the system is increased by a factor
of 2, as compared with the scalar channel in the previous
example. The tradeoffs achieved by the three protocols in this
scenario are shown in Fig. 2. First, we observe that the three
protocols achieve an increased diversity gain, for a given re,
when compared with the scalar channel in Fig. 1. However,
the full effective multiplexing gain, re = 2, is not achieved by
the GTA and O-NDMA protocols, since these two protocols
exclude the possibility of first-round decoding when a collision
occurs. The IR-ARQ protocol, on the other hand, achieves
re = 2, and the DMDT further improves as L increases.

IV. RANDOM ARRIVALS

In this section, we relax the assumption of fully-loaded
queues adopted in Section III. In our PHY model, depending
on the channel conditions, decoding can fail at the base-station
even with no collisions. This forces us to allow packets to be
dropped from a queue even if it is not successfully decoded
at the base station (due to the deadline constraint). Thus, the

error probability (or the diversity gain) is also an important
performance measure that should be included in the analysis,
in addition to the traditional measures of stability region and
average delay commonly used in this set-up. In particular, for
the proposed IR-ARQ protocol, the choice of the deadline
constraint L determines the tradeoff between the average delay
and the error probability (It will be shown, through simulation
results, that an increase in L leads to an increase in the average
delay along with a decrease in the error probability).

We consider infinite-length queues at the users, that are
fed by randomly-arriving packets of a fixed length of BA

information bits. For simplicity, we assume that BT = BA =
B, i.e., the arrival packet size and the transmission packet
size are the same. Thus the first-round transmission rate R is
equal to the arrival rate RA = (B/T ). To emphasize that R
is a system parameter determined by the arrival packet size,
we denote the first-round multiplexing gain r by rA, and call
it the arrival multiplexing gain. The arrival rate of user i is
λi = λ/K packets/slot, where λ denotes the total arrival rate,
and arrivals are assumed to be independent across users.

We first review known results for the stability region and
average delay of the GTA and the NDMA protocol. Then, we
present the stability region and average delay of the proposed
IR-ARQ protocol. Finally, we find the diversity gains achieved
by the GTA, the NDMA and the IR-ARQ protocols as simple
extensions of our results obtained in the previous section.

A. Stability and Average Delay

We define the notion of stability as follows: Let g(m) �
(g1(m), · · · , gK(m)) be the vector of the backlogs at the
beginning of CR epoch m. Then, queue i of the system is
stable if [19]

lim
m→∞ Pr (gi(m) < ḡ) = F (ḡ) and lim

ḡ→∞ F (ḡ) = 1.

(26)
Furthermore, we say that the system is stable if all the K
queues in the system are stable.

The stability region of the GTA can be found using the
techniques in [11] as

λ <

∑K
k=0 B(K, k, pt)Jk∑K
k=0 B(K, k, pt)Xk

, (27)

and the stability region of the O-NDMA protocol can be found
similarly as [5]

λ <
Kpt

Kpt + (1 − pt)K
. (28)

From the literature ([12] and references therein), we find
that there are only limited results on the average delay of
the slotted ALOHA system, and it is a non-trivial task to
characterize the average delay of random access systems. In
this paper, we present only numerical results for the GTA
and the O-NDMA protocol, and provide an approximate delay
analysis for the proposed IR-ARQ protocol. The average delay
of the IR-ARQ scheme can be approximated by using the
analysis of the M/G/1 queue with vacations [17], following
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the approach of Tsatsanis et al in [3]. This analysis yields
only an approximation of the average delay, since the CR
epoch lengths of the IR-ARQ scheme are related to the traffic
load (and hence are not independent and identically distributed
(i.i.d.) as needed for the result to hold). However, as we
will see, in some cases with ρ → ∞ the i.i.d. property
holds for these epoch lengths, and hence the result becomes
asymptotically accurate. We also note that as K increases, this
approximation becomes progressively more accurate [3].

Following the approach of [3], we classify the CR epochs
from the viewpoint of a particular user (say user 1) into either
relevant or irrelevant epochs, depending on whether a packet
of that user is being transmitted in that CR epoch or not. The
idle epochs, consisting of only one time slot during which none
of the users transmit packets, are a subset of the irrelevant
epochs. The lengths of the relevant and the irrelevant epochs
of user 1 are random variables, which are denoted by U and
V , respectively.

Now, we present the stability region and an approximate
average delay for the IR-ARQ protocol in the following
theorem.

Theorem 4: Assuming that

∃ � < ∞ with � ∈ {1, · · · , L}, such that αK(�) > 0, (29)

the necessary and sufficient condition for the stability of the
IR-ARQ protocol is (in packets/slot)

λ <
ηFL

R
=

ptK

1 +
∑K

k=1 B(K, k, pt)
∑L−1

�=1 βk(�)
. (30)

For Poisson arrivals, when λ satisfies (30), the average delay
is approximately given by (in slots)

D =
λ
(
E[U2] + (2−pt)(1−pt)

p2
t

E[V 2] + 2
(

1
pt

− 1
)

E[U ]E[V ]
)

2
(
K − λ

(
E[U ] +

(
1
pt

− 1
)

E[V ]
))

+E[U ] +
(

1
pt

− 1
)

E[V ] +
E[V 2]
2E[V ]

, (31)

where

E[U ] = 1 +
K∑

k=1

B(K − 1, k − 1, p)
L−1∑
�=1

βk(�),

E[U2] = 1 +
K∑

k=1

B(K − 1, k − 1, p)
L−1∑
�=1

(2� + 1)βk(�),

E[V ] = 1 +
K−1∑
k=1

B(K − 1, k, p)
L−1∑
�=1

βk(�),

E[V 2] = 1 +
K−1∑
k=1

B(K − 1, k, p)
L−1∑
�=1

(2� + 1)βk(�),

and p ∈ (0, 1] is a solution of the following equation:

Kp = λ

[
1 +

K∑
k=1

B(K, k, p)
L−1∑
�=1

βk(�)

]
. (32)

Moreover, the delay expression in (31) holds with probability
1 if U and V are i.i.d. and U and V are mutually independent.

Proof: (sketch) We consider the backlog evolution g(m)
of IR-ARQ, where m is the epoch index. We observe that
g(m) is an embedded Markov chain; gi(m), the backlog
evolution of user i is,

gi(m + 1) =
{

(gi(m) − 1)+ + ai(m), with probability pt

gi(m) + ai(m), with probability 1 − pt

(33)
where ai(m) is the number of packets that arrived at user i’s
queue during epoch m, and (x)+ = x if x ≥ 0, (x)+ = 0
otherwise, for a real number x. We first prove that (30) is
the necessary and sufficient condition for the stability of IR-
ARQ. We see that under the assumption (29), g(m) is a
homogeneous, irreducible and aperiodic Markov chain, by
following the argument in the proof of Proposition 1 in [14].
Given that the Markov chain has these properties, stability
of the system is equivalent to the existence of a limiting
distribution for the Markov chain, and thus is also equivalent to
ergodicity of the Markov chain [13]. Sufficiency and necessity
of (30) for the ergodicity can be straightforwardly proved by
following the footsteps of the proof of Theorem 1 in [13]. The
proof for the average delay closely follows [5]. Detailed proof
will be presented in [15].

We note that the assumption (29) always holds when L is
finite since the length of any CR epoch is bounded by L. If
L = ∞, condition (29) requires the existence of a nonzero
probability that the length of an epoch is finite. As ρ → ∞,
the stability region in (30) approaches

λ <
ptK

1 +
∑K

k=1 B(K, k, pt)
∑L−1

�=1 1
(
rA > min

{
�M, �N

k

}) .
(34)

To achieve the maximum stability region, we need to maximize
the right hand side of (34) over pt. At the moment, we do not
have a general solution for this problem. Thus, we present
results only for one special case: rA < min{M, N

K }. In this
case, the stability region is λ < ptK, and the maximum
stability region is thus given by λ < K for the optimal
choice of pt = 1. This is a remarkable improvement over
the O-NDMA protocol, whose maximum stability region is
only λ < 1, for any rA.

B. Diversity Gain

As discussed before, the diversity gain should also be in-
cluded in the comparison of different random access protocols
for our PHY model. The diversity gain with random arrivals
can be directly obtained from the results in the previous
section. One important difference is that in the random arrival
case, unlike in the fully-loaded case, one cannot optimize over
rA, since rA is a system parameter. Based on this observation,
we find that the GTA and the O-NDMA achieve a diversity
gain

dGTA(rA) = dONDMA(rA) = dMAC
1 (rA), (35)
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and the proposed IR-ARQ protocol has diversity gain

dIR(rA) = dMAC
K

(rA

L

)
. (36)

C. Examples

1) Two-User Scalar Random Access Channels: Here, we
consider the random access channels with M = N = 1. For
ease of analysis, we assume that L ≥ K = 2 for the IR-ARQ
scheme.

The stability region of the different random access protocols
with ρ → ∞ is summarized in Table I. In addition, the
error probability, diversity gain and average delay are shown
in Fig. 3, Fig. 4 and Fig. 5 respectively. Here, the stability
region and diversity gain of the three protocols, and the
average delay of the IR-ARQ protocol with ρ → ∞, are
obtained analytically. However, the average delay of the GTA
and O-NDMA protocols, and the average delay of the IR-
ARQ scheme with ρ < ∞ are obtained through numerical
simulations. In these simulations, we use R = rA log(1 + ρ)
with rA = 0.45, and pt = 1 for the IR-ARQ and the O-NDMA
protocols, while pt = 1√

3
for the GTA protocol. It is assumed

that the transmission results in errors, if and only if the channel
is in outage [2]; which is a valid assumption if T is sufficiently
large. In addition, for the IR-ARQ protocol, it is assumed that
the errors in �th round, where � < L, are always detected. We
also note that when rA < 0.5, the average delay expression for
the IR-ARQ scheme, evaluated from Theorem 4, holds with
probability 1, and is given by (when pt = 1) D = 1.5+ λ

2(2−λ) .
Table I and Fig. 4 shows that both the stability region and
diversity gain of the IR-ARQ protocol are the largest. Next,
we focus on the delay and the error probability of IR-ARQ
with different L’s and different ρ’s reported in Fig. 3 and
Fig. 5. We observe that the delay approaches the asymptotic
result with ρ = ∞, and the difference of the delay for IR-ARQ
with L = 2 and with L = 4 decreases, as ρ increases, which
agrees with the analytical results. Furthermore, Fig. 3 and
Fig. 5 reveal an important insight into the relation between the
performance of IR-ARQ and the transmission-delay constraint
L, i.e., a tradeoff between average delay and error probability
emerges. These figures suggest that for certain finite ρ’s, a
large L achieves a small error probability, at the expense of
a large average delay and a small stability region. Therefore,
depending on quality-of-service (QoS) requirements, L can be
adjusted for achieving the best performance.

2) Two-User Vector Random Access Channels: Here, we
consider the 2-user random access protocols with M = 1 and
N = 2 in the high SNR regime (ρ → ∞). We first note that the
stability region and delay of the GTA and O-NDMA protocols
are not different from the scalar case; only the diversity gain
changes with this multiple-antenna setting. For the IR-ARQ
protocol, on the other hand, the average delay is given by
D = 1.5+ λ

2(2−λ) for any rA ∈ [0, 1), and the stability region
is given by, λ < 2, 0 ≤ rA < 1, with pt = 1. Comparing
the stability region of the vector IR-ARQ protocol with that
of the scalar IR-ARQ protocol, we find that the vector IR-
ARQ achieves a better stability region, especially when rA >
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Fig. 3. System error probability versus SNR for various two-user
scalar random access systems with random arrivals. Here, rA = 0.45.
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Fig. 4. Diversity gain versus the arrival multiplexing gain rA for
various two-user scalar random access systems with random arrivals.
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Fig. 5. Load per user versus average delay for various two-user scalar
random access systems with random arrivals. Here, rA = 0.45.
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TABLE I

STABILITY REGION OF DIFFERENT TWO-USER SCALAR RANDOM ACCESS PROTOCOLS

Stability Region Maximum Stability Region

GTA λ < 2pt/(1 + 3p2
t ) λ < 1/

√
3, with pt = 1/

√
3

NDMA λ < 2pt/(2pt + (1 − pt)2) λ < 1, with pt = 1

IR-ARQ

{
λ < 2pt, rA < 0.5,
λ < 2pt/(1 + p2

t ), rA > 0.5.

{
λ < 2, rA < 0.5,
λ < 1, rA > 0.5.

, with pt = 1.
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Fig. 6. Diversity gain versus the arrival multiplexing gain rA for
various two-user vector random access systems with random arrivals.
Note that the curves for the GTA and the NDMA overlap.

0.5. Finally, Fig. 6 shows the diversity gain achieved with
different random access protocols. As expected, the IR-ARQ
protocol achieves the best diversity gain, which improves as
L increases.

V. CONCLUSIONS

We have proposed a new wireless random access protocol
which jointly considers the effects of collisions, multi-path
fading, and channel noise. The proposed protocol relies on
incremental redundancy transmission and joint decoding to
resolve collisions and combat multi-path fading. This approach
represents a marked departure from traditional collision reso-
lution algorithms and exhibits significant performance gains,
as compared with two benchmarks corresponding to the state
of the art in random access protocols; namely GTA and O-
NDMA. It is interesting to observe that, in order to fully
exploit the benefits of the proposed IR-ARQ protocol, all the
users with non-empty queues must transmit with probability
one, when given the opportunity, and should use a small
transmission rate. Finally, we have identified the tradeoff
between average delay and error probability exhibited by the
IR-ARQ protocol for certain SNRs, and have shown that this
tradeoff can be controlled by adjusting the maximum number
of ARQ rounds.
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