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ABSTRACT

The central theme of this dissertation is the impact of feedback on the perfor-

mance of wireless networks. Wireless channels offer a multitude of new challenges

and opportunities that are uncharacteristic of wireline systems. We reveal the cru-

cial role of feedback in exploiting the opportunities and in overcoming the challenges

posed by the wireless medium. In particular, we consider three distinct scenarios and

demonstrate the different ways in which feedback helps improve performance.

We first consider cellular multicast channels and show that the availability of feed-

back allows for the cross-layer design of efficient multicast schedulers. Here we focus

on two types of feedback scenarios: perfect channel state information (CSI) feedback

and automatic repeat request (ARQ) feedback. We propose low-complexity multicast

schedulers that achieve near-optimal asymptotic throughput-delay tradeoffs for both

feedback scenarios. We further propose a cooperative multicast scheduler, requiring

perfect CSI feedback, that achieves the optimal asymptotic scaling of both through-

put and delay with the number of users. For the multiple transmit antenna scenario,

we show that the wireless multicast gain dominates the throughput performance of

multicast schedulers and demonstrate the near-optimality of the proposed worst user

scheduler with a large number of transmit antennas.

Next, we consider fading eavesdropper channels and reveal the importance of

feedback in establishing secure communications. We characterize the secrecy capacity
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of such channels under the assumptions of full CSI and main (legitimate) channel

CSI knowledge at the transmitter, and propose optimal rate and power allocation

strategies. Interestingly, we show that the availability of CSI feedback enables one

to exploit the time-varying nature of the wireless medium and achieve a perfectly

secure non-zero rate even when the eavesdropper channel is more capable than the

legitimate receiver channel on the average. We further establish the critical role of

rate adaptation, based on the main channel CSI, in facilitating secure communications

over slow fading channels. We also propose a low-complexity on/off power allocation

strategy and establish its asymptotic optimality. We then consider a minimal ARQ

feedback scenario and propose transmission schemes that leverage the ARQ feedback

to achieve non-zero perfect secrecy rates even when the eavesdropper has a superior

channel on the average. Thereby, we establish the positive impact of feedback on the

secrecy capacity of fading channels.

Finally, we consider ARQ channels with strict delay deadline constraints and

demonstrate the impact of ARQ feedback on reliability. We show that ARQ feedback

can be exploited to significantly improve the achievable error exponents, and propose

an Incremental Redundancy ARQ (IR-ARQ) scheme that significantly outperforms

the schemes based on memoryless decoding.
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CHAPTER 1

INTRODUCTION

One of the significant advances in communication technology has been the shift

from wireline communication systems (like the Public Switched Telephone Network

(PSTN) and Ethernet-based Local Area Networks (LANs)) to wireless systems (like

Cellular networks (GSM, IS-95, WCDMA), Bluetooth and Wireless LANs (Wi-Fi,

802.11a/b/g/n)). Even though the core infrastructure in some of these new systems

is still wireline-based, the segments of the communication link at the end users use

wireless technology. The freedom of mobility that these wireless systems provide

to the users has been the primary impetus to their popularity. However, this shift

to wireless communication also brings with it a multitude of new challenges and

opportunities, that require an in-depth understanding of the properties of the wireless

medium, and cannot be addressed by mere extensions of wireline solutions. We now

present a brief overview of some of the properties of wireless channels that will play

an integral role in the rest of the dissertation.

A significant property affecting performance in wireless systems is the phenomenon

of channel fading. When a signal is transmitted over a wireless medium, multiple

copies of the signal are seen by the receiver due to the reflection and scattering of
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the transmitted signal by objects in the vicinity of the transmission. These multi-

ple copies arrive with different delays at the receiver and interfere constructively or

destructively with each other, thereby causing random fluctuations in the received

signal power, which is referred to as multi-path fading. Several methods have

been proposed to mitigate fading and improve the reliability of transmissions. The

main idea of these diversity techniques is to transmit multiple copies of the same

symbol over different channels that experience independent fading, while the receiver

uses all its observations jointly to decode the transmitted symbol. This ensures that

even if some channels are in a deep fade, the symbol can still be reliably decoded

using the observations from other channels. Thus, by taking multiple instances of

the channel and averaging out the effects of fading, all these methods, in principle,

strive to convert the fading channel into an AWGN channel. Examples of such di-

versity techniques include time diversity (Time interleaving of coded bits), frequency

diversity (Frequency hopping/ Direct sequence spread spectrum) and spatial diversity

(Beamforming, Space-time coding, Rake combining).

However, it has been shown recently that averaging out the time-varying nature

of fading channels, through diversity techniques, is not optimal when there are a

large number of users in the system. One can reap significant performance gains

by exploiting a form of diversity, called multi-user diversity, that focuses rather

on exploiting the time-varying nature of fading channels and is inherent in networks

with a large number of users. This contrasting outlook of exploiting fading was first

introduced by Knopp and Humblet [1] in the uplink of a cellular system. They showed

that when the users experience symmetric fading, the optimal scheme that maximizes

system capacity, allows only the user with the best channel to transmit at any given
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time1. This result can be intuitively explained as follows: When the system has a

large number of users that experience independent fading, it is highly likely that there

will be at least one user in the system, at any particular instant, whose channel is

much better than the average. Thus by always transmitting to such “good” users in

every time slot, one can ride the “peaks” of the users’ channel variations and achieve

significant performance gains. In fact, it was shown in [1] that by exploiting multi-user

diversity, the throughput of a system with a large number of fading users can be made

significantly higher than that of a Gaussian system with the same average received

power, where the users do not experience any fading. Similar results highlighting the

throughput gains due to multi-user diversity were shown in [2–4]. However, it should

be noted that these throughput gains come at the price2 of an increased delay and

may also lead to fairness issues, especially in asymmetric fading scenarios.

Wireless systems also have an inherent multicast property, that is uncharacter-

istic of wireline systems. Any signal transmitted to a particular user will also reach

all the other users in the system for free. This property can be exploited to yield per-

formance gains in multicast systems, where one desires to send the same information

to all the users (or a group of users) in the system, as will be shown in Chapter 2

of this dissertation. On the other hand, this inherent multicast property also has a

detrimental effect in that a user’s transmission will now interfere with any other si-

multaneous transmissions within the system that are in the vicinity of that user. This

inter-user interference complicates system design by introducing new constraints,

1If all the users experience deep fades in a particular time slot, then none of the users transmit
in that slot. But the probability of this event is negligible when there are a large number of users.

2Note that a feedback link is also necessary for implementing such a scheme, since the transmitter
either needs to know the users’ channel gains (downlink) or needs to communicate the scheduling
decisions to the users (uplink).
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and forces the designer to adopt a holistic view of the system while devising commu-

nication schemes. For example, it has been shown by Gupta and Kumar [5] that in

wireless ad hoc networks, the best strategy to increase the total throughput of the

network, is to let a node use the least possible transmission power and communicate

with its nearest neighbors (thereby causing least interference to other simultaneous

transmissions within the network).

Another advantage of the multicast property of wireless channels is the possibility

for user cooperation. Since the transmission to any particular user is also received

by other users in the system, one can improve the throughput and/or reliability of

the transmission by allowing these “relay” users to cooperate with the source and/or

destination user. The problem of devising intelligent strategies for user cooperation

has received considerable attention in recent years, and several cooperation schemes

have been proposed [6–10]. Some examples of cooperative protocols are Amplify-and-

Forward, Decode-and-Forward and Compress-and-Forward, wherein the cooperating

users amplify/decode/compress their received observations (respectively) before for-

warding them to the destination. Another cooperation strategy for a dense sensor

network scenario with a central collector node is proposed in [10]. Here cooperation

is achieved by allowing each sensor to first transmit its information to its neighbors,

and then using a cooperative beamforming (Virtual-MIMO) strategy to improve the

throughput and reliability of transmissions to the collector node. In this dissertation,

we highlight the advantages of user cooperation for a multicast setting in Chapter 2,

where we propose a Cooperative Multicast3 scheme that is similar in spirit to the

Decode-and-Forward scheme. The proposed scheme allows the stronger users in the

3A detailed description of this scheme is provided in Section 2.2.3.
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system to decode the multicast transmissions and forward them to the other weaker

users. In fact, it is shown that this cooperative scheme is asymptotically optimal in

both the delay and throughput sense.

Security is also an important issue that arises in wireless systems due to their

inherent multicast nature. While transmitting confidential messages to a particu-

lar user, it becomes important to ensure that the other users in the system, who

also receive the transmission, are unable to decode these messages. The notion of

information-theoretic security, where an eavesdropper does not gain any information

about the confidential message even after observing all the transmissions, has been

studied in [11–14]. Interestingly, it has been shown in [13] that for AWGN channels,

one cannot ensure perfect secrecy when the channel of an eavesdropper is better than

the channel of the legitimate receiver. In Chapter 3 of this dissertation, we consider a

wireless fading scenario and show that one can exploit the time-varying nature of the

wireless medium (channel fading) to ensure perfect secrecy, even when the channel of

an eavesdropper is better than the legitimate user’s channel on the average.

All these different challenges and opportunities offered by the wireless channel

suggest that the physical layer of any wireless communication system can no longer

be separated from other higher layers (like the network and medium access control

(MAC) layers). It necessitates the need for a cross-layer design perspective, which

takes the properties of the wireless medium into account, while designing efficient

routing and scheduling schemes for wireless networks. One example highlighting the

importance of cross-layer design at the network layer is the multi-hop nearest-neighbor

routing protocol proposed by Gupta and Kumar [5], wherein physical layer issues like

inter-user interference are also included in the routing design. Another example that
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emphasizes cross-layer design at the MAC layer is the best-user scheduler proposed

by Knopp and Humblet [1], wherein the scheduler tries to exploit the gains offered

by multi-user diversity to increase system throughput. Other works highlighting the

importance of cross-layer design for wireless systems include [15–18]. In Chapter 2

of this dissertation, we consider the design of efficient schedulers for a multicast

scenario, which is characterized by a strong interaction between the network, medium

access and physical layers. We demonstrate the importance of adopting a cross-

layer perspective for this scenario by quantifying the potential gains achieved by

exploiting physical layer properties (like multi-user diversity, multicast gain and user

cooperation) in the scheduler design.

Throughout this dissertation, we focus on studying the impact of feedback on

the performance of wireless systems. Feedback plays a crucial role in overcoming the

afore-mentioned challenges and in efficiently utilizing all the resources offered by the

wireless medium. We focus primarily on two different feedback scenarios:

• Perfect CSI feedback, where perfect channel state information is made available

to the transmitter(s). This feedback scenario is idealistic and serves as an upper

bound on the performance achieved by other practical feedback scenarios.

• ARQ feedback, which represents the minimal feedback scenario where only one

bit (ACK/NACK) indicating the success or failure of a transmission, can be fed

back to the transmitter(s).

The impact of these and other feedback mechanisms on the performance of com-

munication systems has been studied extensively by many researchers [19–23]. For

example, Shannon proved an interesting negative result in [19] that feedback does not
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increase the capacity of discrete memoryless channels. However, it was later shown

that feedback does offer significant gains in error performance (reliability) [20, 21]

and can greatly simplify the system design for memoryless channels. For example, to

achieve the capacity of a Binary Erasure Channel (BEC) without feedback, one needs

to use a fairly complex encoding/decoding strategy (The encoder needs to transmit

long codeword sequences which result in significant decoding complexity at the de-

coder). However, the structure of the capacity-achieving encoding/decoding scheme

changes significantly with the availability of minimal ARQ feedback. In this case,

the receiver feeds back a NACK/ACK bit based on whether it sees an erasure or

not, while the transmitter resorts to uncoded transmission and merely repeats each

information bit until it gets an ACK from the receiver. This shows that even the

presence of minimal ARQ feedback can greatly simplify the system design. It has

been shown in [22,23] that minimal ARQ feedback also has a positive impact on the

reliability of wireless channels.

In this dissertation, we reveal the role of feedback in improving the performance of

wireless networks. In particular, we consider three distinct scenarios and demonstrate

the different ways in which feedback helps improve performance. In Chapter 2, we first

consider a cellular multicast scenario and show that the availability of feedback allows

for the cross-layer design of efficient multicast schedulers. Specifically, we propose

low-complexity multicast schedulers for both the perfect CSI and the ARQ feedback

scenarios, that achieve near-optimal throughput-delay tradeoffs. Next, in Chapter 3,

we reveal the importance of feedback in establishing secure communication over fading

eavesdropper channels. Specifically, we propose transmission schemes for different

perfect CSI and ARQ feedback scenarios, that achieve non-zero perfect secrecy rates
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even when an eavesdropper’s channel is better than the legitimate receiver’s channel

on the average. Finally, in Chapter 4, we demonstrate the impact of ARQ feedback

on reliability. We show that ARQ feedback can be exploited to significantly improve

the achievable error exponents over channels with strict delay deadline constraints.

1.1 Contributions and Outline

We now provide a brief outline and the main contributions of each chapter in the

dissertation. (The main results of this dissertation are documented in [24–26].)

In Chapter 2, we consider the multicast channel in a single cell system, where

a common information stream is transmitted by the base station to multiple users.

For this scenario, we propose three classes of scheduling algorithms with progressively

increasing complexity, viz. Static schedulers with memoryless decoding, Incremental

Redundancy (IR) multicast and Cooperative multicast, and evaluate their asymptotic

throughput-delay performance with the number of users in the system. The main

contributions of this chapter can be summarized as follows:

• We show the existence of a static scheduler with memoryless decoding (Median

user scheduler) that achieves near-optimal scaling of both throughput and delay

with the number of users in the system.

• IR multicast is shown to achieve a superior throughput-delay tradeoff than

the static schedulers with memoryless decoding. Moreover, unlike the other

proposed schedulers, IR multicast relies only on minimal ARQ feedback and

does not require perfect CSI knowledge at the base station.
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• Cooperative multicast is shown to be optimal in the asymptotic sense, i.e., it

achieves the optimal scaling of both throughput and delay with the number of

users in the system.

• When the base station is equipped with multiple transmit antennas (with lim-

ited feedback), it is shown that the wireless multicast gain harnessed by a sched-

uler dominates its throughput performance (as the number of transmit antennas

becomes large).

In Chapter 3, we consider the secure transmission of information over an er-

godic fading channel in the presence of an eavesdropper. We characterize the secrecy

capacity of such a system under different assumptions on the CSI available at the

transmitter. We further derive the perfect secrecy rates achievable using ARQ feed-

back from the legitimate receiver. The main contributions of this chapter can be

summarized as follows:

• We characterize the secrecy capacity for the full CSI case (where the transmitter

knows the CSI of the legitimate receiver and the eavesdropper) and propose the

optimal power and rate allocation strategies that achieve capacity.

• We characterize the secrecy capacity for the main channel CSI case (where the

transmitter only knows the CSI of the legitimate receiver) and propose the

optimal power and rate allocation strategies. Thereby, we establish the critical

role of rate adaptation, based on the main channel CSI, in facilitating secure

communication over fading channels.

• For the main channel CSI case, we propose a low-complexity on/off power alloca-

tion strategy that achieves near-optimal performance. Moreover, the proposed
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on/off scheme is shown to be asymptotically optimal (for large average SNR),

and interestingly, is also shown to attain the full-CSI secrecy capacity.

• We propose two transmission schemes based on ARQ feedback, viz. Repeti-

tion ARQ and IR-ARQ, and characterize their achievable perfect secrecy rates.

Thereby, we reveal the positive impact of minimal ARQ feedback on the secrecy

capacity of fading channels.

In Chapter 4, we consider communication over Automatic Repeat reQuest (ARQ)

memoryless channels with strict delay deadline constraints. The delay constraint is

imposed in the form of an upper bound L on the maximum number of ARQ transmis-

sion rounds. For this setup, we propose a transmission scheme based on incremental

redundancy ARQ with joint decoding at the receiver, and evaluate the achievable

error exponent. The main contributions of this chapter are as follows:

• Without delay constraints, Incremental Redundancy ARQ (IR-ARQ) achieves

the same error exponent as Forney’s memoryless decoding scheme [21].

• Under a deadline constraint, IR-ARQ outperforms Forney’s memoryless decod-

ing scheme in terms of the achievable error exponents.

• For the Binary Symmetric Channel (BSC) and the Very Noisy Channel (VNC),

choosing L = 4 for IR-ARQ is sufficient to ensure the achievability of Forney’s

feedback exponent, which is typically achievable with memoryless decoding only

as L → ∞. Our numerical calculations indicate that this result also holds for

the AWGN channel (at least for some range of SNRs).
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Acronym Expansion

ACK Acknowledgement

ARQ Automatic Repeat Request

AWGN Additive White Gaussian Noise

BS Base Station

BSC Binary Symmetric Channel

CSI Channel State Information

DMC Discrete Memoryless Channel

IR-ARQ Incremental Redundancy ARQ

KKT Karush Kuhn Tucker

MAC Medium Access Control

MRC Maximal Ratio Combining

NACK Negative ACK

QoS Quality of Service

Rep-ARQ Repetition ARQ

SNR Signal to Noise Ratio

VNC Very Noisy Channel

Table 1.1: List of Acronyms used in the dissertation

Finally in Chapter 5, we offer some concluding remarks and possible directions

for future research. To enhance the flow of the dissertation, we collect all the proofs

that do not offer much intuition, in the Appendix.
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CHAPTER 2

FEEDBACK FOR CROSS-LAYER SCHEDULING: THE
CELLULAR MULTICAST CHANNEL

Wireless networks are becoming increasingly popular primarily due to their ease

of installation and the freedom of mobility that they offer to the users. Traditional

data link and network layer protocols designed for wireless networks adopt simplified

on/off models for the physical layer, and thereby focus on reducing the system to a

wireline scenario. This approach of designing algorithms based on the assumption

that the wireless channel behaves like a reliable, time-invariant bit-pipe has been

shown to be highly sub-optimal, especially for applications with strict Quality of

Service (QoS) constraints. Recent years have witnessed a growing interest in cross-

layer design approaches for wireless system design. The underlying idea in these

approaches is to jointly optimize the physical, data link, and networking layers in order

to satisfy the QoS constraints with the minimum expenditure of network resources.

Early investigations on cross-layer design have focused on the single user case [27,28].

These works have shed light on the fundamental tradeoffs in this scenario and devised

efficient power and rate control policies that approach these limits. More recent works

have considered multi-user cellular networks [29–33]. These studies have enhanced
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our understanding of the fundamental limits and the structure of optimal resource

allocation strategies.

In this chapter, we generalize this cross-layer approach to the wireless multicast

channel, where the same information stream is transmitted by the base station to mul-

tiple users within the network. Such multicast scenarios often occur in broadband

wireless networks, due to their support for streaming video (Mobile TV) applications

using the IP Datacasting (IPDC) and Digital Video Broadcasting-Handheld (DVB-H)

frameworks. Moreover, these multicast scenarios are characterized by a strong inter-

action between the network, medium access, and physical layers. This interaction

adds significant complexity to the problem which motivated the adoption of a sim-

plified on/off model for the wireless channel in several of the recent works on wireless

multicast [34–36]. In this chapter, we argue that employing more accurate models

for the wireless channel allows for valuable opportunities for exploiting the wireless

medium to yield performance gains. More specifically, we shed light on the role of the

following characteristics of the wireless channel in the design of multicast scheduling

strategies: 1) The multi-user diversity resulting from the statistically independent

channels seen by the different users [1], 2) The wireless multicast gain resulting from

the fact that any information transmitted over the wireless channel is overheard by

all users, possibly with different attenuation factors, and 3) The cooperative gain

resulting from antenna sharing between users [6].

2.1 System Model

We consider the downlink of a single cell system where a base station (BS) serves

a group of N users. All the users request the same information from the BS. Unless
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otherwise stated, the BS is assumed to be equipped with a single transmit antenna.

Each user is assumed to have only a single receive antenna. We consider time-slotted

transmission in which the received symbol vector at user i in time slot k is given by

yi[k] = hi[k]x[k] + ni[k],

where x[k] denotes the complex-valued vector of length m transmitted by the BS in

slot k, hi[k] represents the complex flat fading coefficient of the channel between the

BS and the ith user in time slot k, and ni[k] represents the zero-mean unit-variance

complex additive white Gaussian noise vector at the ith user in slot k. The noise

processes are assumed to be circularly symmetric and independent across users. The

channel between the BS and each user is assumed to be quasi-static with coherence

time Tc. Thus the fading coefficients remain constant throughout an interval of length

Tc (or m channel uses) and change independently from one interval to the next. The

fading coefficients {hi} are assumed to be independent and identically distributed

(i.i.d.) across the users (symmetric fading scenario) and follow a Rayleigh distribution

with E [|hi[k]|2] = 1, ∀i, k. Each packet transmitted by the BS is assumed to be of

constant size S. We further employ the following short-term average power constraint

at the base station

1

m
E
[
‖x[k]‖2

]
≤ P.

Clearly, further performance gain may be reaped through a carefully constructed

power allocation policy if this short term power constraint is replaced by a long term

one. However, in this chapter, we only focus on rate adaptation and scheduling

based on the instantaneous channel state available at the BS. Moreover, the proposed
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scheduling strategies, except the incremental redundancy scheme4, assume perfect CSI

knowledge at both the transmitter (BS) and receiver. In our throughput analysis, we

use capacity expressions for the channel transmission rates. Here we implicitly assume

that the BS employs coding schemes that approach the channel capacity which justify

our use of the fundamental information theoretic limit of the channel.

In our delay analysis, we consider backlogged queues, and hence, the only meaning-

ful measure of delay is the transmission delay. This leads to the following definitions

for throughput and delay that will be adopted in this chapter.

Definition 1. The throughput of a scheduling scheme is defined as the sum of the

throughputs provided by the base station to each individual user within the system.

Definition 2. The delay of a scheduling scheme is defined as the delay between the

instant representing the start of transmission of a packet, and the instant when the

packet is successfully decoded by all the users in the system.

We note here that our notion of delay does not account for the queuing delay

experienced by the packets. We adopt this restricted notion to simplify the delay

analysis, since significant complexity is added to the queuing delay analysis by the

formation of coupled queues5 in the multicast setting. However, our delay analysis

offers a lower bound on the total delay which is very tight in several important special

cases. Furthermore, this analysis provides a very useful tool for rank-ordering the

different classes of scheduling algorithms and sheds light on their structural properties.

4For the incremental redundancy scheme, the BS only needs to know when to stop transmission
of the current codeword.

5This notion of coupled queues will be made clear in the discussion of the best user scheduler in
the next section.
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To facilitate analytical tractability, we focus only on evaluating the asymptotic

scaling laws of the throughput and delay of the proposed schedulers with the number

of users in the system. In this analysis, we use the following asymptotic notations:

a) f(n) = O(g(n)) iff there are constants c and n0 such that f(n) ≤ cg(n) ∀n > n0.

b) f(n) = Ω(g(n)) iff there are constants c and n0 such that f(n) ≥ cg(n) ∀n > n0.

c) f(n) = Θ(g(n)) iff there are constants c1, c2 and n0 such that ∀n > n0, we have

c1g(n) ≤ f(n) ≤ c2g(n).

2.2 Cross-layer Multicast Schedulers

In a non-cooperative setting, wherein the users cannot help each other to decode

the multicast transmissions, the throughput-optimal scheme is an N -level superpo-

sition coding/successive decoding scheme [37], where N parallel streams (layers) are

transmitted simultaneously from the BS (Layered Multicast). While the user with

the best channel can successfully decode all the N streams, the user with the worst

channel can decode only one of the streams successfully (i.e., with arbitrarily small

probability of error). This layered strategy, however, suffers from excessive complex-

ity (especially when there are a large number of users in the system) and might be

infeasible to implement in practice, since the mobile nodes have low processing power

and tight battery power constraints. This motivates our work where we focus on

the throughput and delay achieved by low complexity scheduling schemes, which do

not require any superposition coding/successive decoding at the BS and users respec-

tively, and are based only on single stream transmissions by the BS. Interestingly,

we identify low complexity schedulers that achieve near-optimal scaling laws of both

throughput and delay with the number of users N . Furthermore, we establish the

16



asymptotic optimality of the proposed cooperative multicast scheduler in terms of

both delay and throughput.

2.2.1 Static Schedulers with Memoryless Decoding

In this class of schedulers, the BS always schedules transmissions to a desired

fraction of the users with favorable channel conditions (by adjusting the transmission

rate accordingly). While the identity of the users change, based on the instantaneous

channel conditions, the fraction of users that are able to decode every transmitted

packet always remains the same (and hence the name “static”). The memoryless

decoding property dictates that the remaining users, who do not succeed in decod-

ing, flush their memories and wait for future re-transmissions of the packet. This

assumption is imposed to limit the complexity of the encoding/decoding process. In

Section 2.2.2, we relax this memoryless decoding assumption and quantify the gains

offered by carefully constructed ARQ schemes. Under this class of schedulers, we now

study three different schemes of scheduling transmissions to the best, worst and me-

dian user in detail. These three schemes highlight the tradeoff between exploiting the

multi-user diversity and the wireless multicast gain offered by the wireless medium.

Worst User Scheduler

This scheme maximally exploits the wireless multicast gain by always transmitting

to the user with the least instantaneous SNR (worst channel) in the system. Hence

at any time instant, the BS chooses its transmission rate to be the rate supported by

the worst user in the system. This enables all the users to successfully decode the

transmission (since any user with a higher supported rate can decode the transmitted

information). Thus any data transmitted by the BS reaches all the users in a single

17



transmission. However, since the transmission rate supported by the worst user decays

as the number of users becomes large, it is clear that the multi-user diversity inherent

in the system works against the performance of this scheme and results in a decrease

in the individual throughput to any user. The average throughput of the worst user

scheduler is given by

Rtot = NE
[
log
(
1 + |hπ(1)|2P

)]
,

where |hπ(1)|2 = minN
i=1 |hi|2 is the minimum channel gain among all the N users in

the system, whose distribution and density functions are given by

F|hπ(1)|2(x) = 1 − e−Nx and f|hπ(1)|2(x) = Ne−Nx, x ≥ 0.

Throughout this chapter, the log(.) function refers to the natural logarithm, and

hence, the average throughput is expressed in nats. Since any transmission by the BS

reaches all the users in the system, the BS needs to maintain only a single common

queue for all the users to implement this scheme.

Theorem 3. The average throughput and the average delay of the worst user scheduler

scale as

Rtot = Θ(1) and D = Θ(N), (2.1)

with the number of users N .

Proof. Refer Appendix A.1.

From Theorem 3, it is clear that the average throughput of the worst user scheduler

does not scale with the number of users N , while the average delay increases linearly

with N .
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Best User Scheduler

This scheme maximally exploits the multi-user diversity available in the system.

At any instant, the BS chooses its transmission rate to be the rate supported by the

best user in the system. Since the transmission rate is adjusted based on the user

with the maximum instantaneous SNR, none of the other users in the system will

be able to successfully decode the transmission. Thus only one user is targeted in

every transmission and the scheme fails to exploit any wireless multicast gain. Hence

every packet must eventually be repeated N times before it reaches all the users. The

average throughput of the best user scheduler is given by

Rtot = E
[
log
(
1 + |hπ(N)|2P

)]
,

where |hπ(N)|2 = maxN
i=1 |hi|2 is the maximum channel gain among all the N users in

the system, whose distribution function is given by

F|hπ(N)|2(x) =
(
1 − e−x

)N
, x ≥ 0.

To implement this scheme, the BS needs to maintain a set of N coupled queues,

one for each user in the system. These queues are coupled in the sense that any packet

that needs to be transmitted enters all the N queues simultaneously (to ensure that

the packet reaches all the users), and the BS serves only one of these N queues (the

queue corresponding to the best user) at any time. Thus the delay in transmitting a

particular packet to all the users is given by the delay in transmitting that packet from

all of the N queues at the BS. In our analysis, we benefit from the concept of worst case

delay proposed in [4] for analyzing the delay in unicast networks. In [4], the authors

characterized the worst case delay by restating their problem as the “coupon collector

problem” which has been studied extensively in the mathematics literature [38, 39].

19



In the coupon collector problem, the users are assumed to have coupons and the

transmitter is the collector that selects one of the users randomly (with a uniform

distribution) and collects his coupon. The problem is to characterize the average

number of trials required to ensure that the collector collects m coupons from all the

users. Our queuing problem is analogous to the coupon collector problem with the

only fundamental difference being that the size of the coupons is time-varying in our

problem due to rate adaptation (the detailed analysis is presented in the proofs). The

following theorem establishes the average throughput and delay achieved by the best

user scheduler.

Theorem 4. The average throughput and the average delay of the best user scheduler

scale as

Rtot = Θ(log log N) and D = Ω (N log N) , (2.2)

with the number of users N .

Proof. Refer Appendix A.2.

From Theorems 3 and 4, one can conclude that maximally exploiting the multi-

user diversity yields higher throughput gains than maximally exploiting the wireless

multicast gain, when there are a large number of users in the system. This throughput

gain, however, is obtained at the expense of a higher delay. This observation motivates

the investigation of other static schedulers that achieve a better throughput-delay

tradeoff.

Median User Scheduler

This scheme strikes a balance between exploiting the multi-user diversity and the

wireless multicast gain offered by the system. At any instant, the BS chooses its
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transmission rate such that the better half of the users in the system can success-

fully decode each transmission, i.e., the rate is adjusted based on the user whose

instantaneous SNR is the median among the SNRs of all users. Thus (N/2) users

are targeted in each transmission and therefore, unlike the best user scheduler, this

scheduler benefits from the wireless multicast gain. Moreover, unlike the worst user

scheduler, the inherent multi-user diversity does not degrade the performance of this

scheduler (since the instantaneous SNR of the median user does not degrade with N).

Once the BS starts transmitting a packet, it keeps on repeating the same packet until

it is successfully decoded by all the users in the system. Since the BS is assumed to

have perfect channel knowledge, it can easily keep track whether or not the transmit-

ted packet has been decoded by all the users in the system. Once the current packet

reaches all the N users, the BS immediately starts transmitting the next packet in

the same fashion. The BS needs to maintain only a single common queue that caters

to all the users in the system.

One drawback of this scheme is that some of the users may receive redundant

copies of the same packet (since any user who has decoded the packet has to wait until

all the other users have decoded that packet). This redundancy leads to a reduction

in the effective throughput achieved by this scheme. However, it is interesting to note

that the median user scheduler achieves near-optimal scaling laws of both throughput

and delay, as shown in the following theorem.

Theorem 5. The average throughput and the average delay of the median user sched-

uler scale as

Rtot = Θ

(
N

log N

)

and D = Θ (log N) , (2.3)

with the number of users N .
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Proof. Refer Appendix A.3.

By comparing the results in Theorems 3, 4 and 5, it is clear that the proposed

median user scheduler achieves a much superior throughput-delay tradeoff than the

best and worst user schedulers, by striking a balance between exploiting multi-user

diversity and multicast gain.

An upper bound on the average throughput of any scheduling scheme is given by

Rtot ≤ E

[
N∑

i=1

log
(
1 + |hi|2P

)

]

= NE
[
log
(
1 + |h1|2P

)]
= Θ(N). (2.4)

Moreover, the average delay of any scheduling scheme can also be easily lower

bounded as

D = Ω(1). (2.5)

Comparing these bounds with the results in Theorem 5, we find that the proposed

median user scheduler achieves near-optimal scaling laws of both throughput and

delay. In fact, the loss in both delay and throughput scaling laws, compared to the

optimal values, is only a factor of (log N). However, this scheme requires perfect

knowledge of the channel gains of all the users (CSI) at the BS, and hence entails a

significant feedback requirement. We next propose a scheduling scheme that does not

require perfect CSI at the BS and entails very minimal feedback.

2.2.2 Incremental Redundancy Multicast

In this section, we relax the memoryless decoding requirement and propose a

scheme that employs a higher complexity incremental redundancy encoding/decoding

strategy to achieve a better throughput-delay tradeoff than the median user scheduler.

The proposed scheme is an extension of the incremental redundancy scheme given by
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Caire et al in [22]. An information sequence of b bits is encoded into a codeword of

length LM , where M refers to the rate constraint. The first L bits of the codeword

are transmitted in the first attempt. If a user is unable to successfully decode the

transmission, it sends back an ARQ request to the BS. If the BS receives an ARQ

request from any of the users, it transmits the next L bits of the same codeword

in the next attempt. After each transmission attempt, the users try to decode the

transmitted information sequence using the received sequence in that attempt jointly

with the received sequences in all previous ARQ attempts. This process continues

until either all N users successfully decode the information sequence or the rate

constraint M is violated6. Then the codeword corresponding to the next b information

bits is transmitted in the same fashion.

In this scheme, similar to the median user scheduler proposed earlier, even if some

of the users successfully decode the packet in very few attempts, they still have to

wait until all the N users successfully receive the packet before any new packet is

transmitted to them by the BS. This sub-optimality of the proposed schemes results

in significant complexity reduction by avoiding the use of superposition coding and

successive decoding. However, unlike the median user scheme, this scheme does not

require the knowledge of perfect CSI at the BS. The BS only needs to know when to

stop transmission of the current codeword. Hence the feedback required is minimal.

The following result establishes the superior throughput-delay tradeoff achieved by

this scheme compared with the median user scheduler.

6In our analysis, we consider the unconstrained case, where M → ∞.
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Theorem 6. The average throughput and the average delay of the incremental re-

dundancy multicast scheduler scale as

Rtot = Θ

(
N log log N

log N

)

and D = Θ

(
log N

log log N

)

, (2.6)

with the number of users N .

Proof. Refer Appendix A.4.

Thus, from Theorem 6 and the throughput and delay bounds in (2.4) and (2.5),

it is clear that incremental redundancy multicast achieves near-optimal scaling laws

of both throughput and delay. The loss in both delay and throughput scaling laws,

compared to the optimal values, is only a factor of (log N/ log log N). In this ap-

proach, the BS again needs to maintain only a single queue that serves all the users

in the system. This approach, however, entails added complexity in the incremental

redundancy encoding and the storage and joint decoding of all the observations.

2.2.3 Cooperative Multicast

In this section, we demonstrate the benefits of user cooperation and quantify the

tremendous gains that can be achieved by allowing the users to cooperate with each

other. In particular, we propose a cooperation scheme that minimizes the delay while

achieving the optimal scaling law of the throughput. This scheme is similar in spirit

to the Decode-and-Forward scheme [8] and is divided into two stages. In the first

half of each time slot, the BS transmits the packet to one half of the users in the

system (i.e., the median user scheduler). During the next half of the slot, the BS

remains silent. Meanwhile all the users that successfully decoded the packet in the

first half of the slot cooperate with each other and transmit the packet to the other
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(N/2) users in the system. This is equivalent to a transmission from a transmitter

equipped with (N/2) transmit antennas to the worst user in a group of (N/2) users.

If Rs1 and Rs2 are the rates supported in the first and second stage respectively,

then the actual transmission rate is chosen to be min{Rs1, Rs2} in both stages of the

cooperation scheme. Note that the rate Rs2 is chosen such that the information can

be successfully decoded even by the worst of the remaining (N/2) users. Here, we

note that this scheme requires the BS to know the CSI of the inter-user channels.

The scheme, however, does not require the users to have such transmitter CSI (i.e.,

in the second stage the users cooperate blindly by using i.i.d. random coding). The

average throughput of the proposed cooperation scheme is thus given by

Rtot =

(
N

2

)

E [min{Rs1, Rs2}] .

The following theorem establishes the optimality of the proposed scheme, in terms of

both delay and throughput scaling laws.

Theorem 7. The proposed cooperative multicast scheduler achieves the optimal scal-

ing laws of both delay and throughput. In particular, the average throughput and the

average delay of this scheduler scale as

Rtot = Θ(N) and D = Θ(1), (2.7)

with the number of users N . Here we assume that the inter-user channels have the

same fading statistics as the channels between the base station and users, and the

total transmitted power is upper bounded by P .

Proof. Refer Appendix A.5.
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Scheme Average Throughput Average Delay
Rtot D

Worst User Scheduler Θ(1) Θ(N)

Best User Scheduler Θ(log log N) Ω(N log N)

Median User Scheduler Θ

(
N

log N

)

Θ(log N)

IR Multicast Θ

(
N log log N

log N

)

Θ

(
log N

log log N

)

Cooperative Multicast Θ(N) Θ(1)

Table 2.1: Comparison of the throughput-delay tradeoffs achieved by the proposed
multicast schedulers

The price for this optimal performance is the added complexity needed to 1) equip

every user terminal with a transmitter, 2) decode/re-encode the information at each

cooperating user terminal, and 3) inform the BS with perfect CSI of the inter-user

channels. In Table 2.1, we provide a comparison of the throughput-delay tradeoffs

achieved by each of the proposed multicast schedulers.

2.3 Multi-Transmit Antenna Gain

The performance of the best and worst user schedulers proposed in Section 2.2.1

depends on the spread of the fading distribution of the users’ channels. For exploiting
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significant multi-user diversity gains, the distribution needs to be well-spread out [3].

The lower the spread of the distribution, the lesser the multi-user diversity gain (or

loss as shown in the following). To illustrate this point, we consider a scenario where

the BS is equipped with L transmit antennas. We assume that the BS has knowledge

of only the total effective SNR at any particular user and does not know the individual

channel gains from each transmit antenna to that user. Under this assumption, the

BS just distributes the available power equally among all the L transmit antennas.

Thus the effective fading power gains follow a normalized Chi-square distribution

with 2L degrees of freedom. Note that the fading power gains were exponentially

distributed (Chi-square with 2 degrees of freedom) in the single transmit antenna

case. We now characterize the asymptotic throughput scaling laws of the best and

worst user schedulers for this multi-transmit antenna scenario. Note that all the

results in this section are derived for the case where L is a constant and does not

scale with N .

2.3.1 Worst User Scheduler

The average throughput of the worst user scheduler is given by

Rtot = NE
[
log
(
1 + |χmin|2P

)]
,

where |χmin|2 = minN
i=1 |χi|2, and |χi|2 corresponds to the effective fading power gain

at the ith user that follows a normalized Chi-square distribution with 2L degrees of

freedom and whose distribution function is given by

F (x) = 1 − e−Lx

(
L−1∑

k=0

(Lx)k

k!

)

, x ≥ 0. (2.8)
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Lemma 8. When the base station is equipped with L transmit antennas, the average

throughput of the worst user scheduler scales as

Rtot = Θ
(

N(L−1
L )
)

. (2.9)

Proof. Refer Appendix A.6.

From (2.9), it is clear that the throughput scaling law of the worst user scheduler

improves as L increases. This throughput improvement is expected since the perfor-

mance of the worst user scheduler is known to be degraded by the tail of the fading

distribution. Hence as L increases, the spread of the fading distribution decreases,

and consequently, the inherent multi-user diversity has a reduced effect on the per-

formance of the scheduler. This leads to a rise in the average throughput of the worst

user scheduler from Θ(1) for the single transmit antenna case to almost Θ(N) for

large values of L. Thus the worst user scheduler achieves a near-optimal throughput

scaling for large values of L.

2.3.2 Best User Scheduler

The average throughput of the best user scheduler is given by

Rtot = E
[
log
(
1 + |χmax|2P

)]
,

where |χmax|2 = maxN
i=1 |χi|2.

Lemma 9. When the base station is equipped with L transmit antennas, the average

throughput of the best user scheduler scales as

Rtot = Θ

(

log

(

1 +
log N + (L − 1) log log N

L

))

. (2.10)
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Proof. Refer Appendix A.7.

Since the best user scheduler leverages multi-user diversity to enhance the through-

put, one can see from (2.10) that its throughput decreases as L increases.

It is interesting to note that even when the BS is equipped with only 2 transmit

antennas (L = 2), the throughput of the worst user scheduler is significantly higher

than that of the best user scheduler. This is contrary to our conclusion in Section 2.2.1

for the single transmit antenna case, where we showed that the best user scheduler

outperforms the worst user scheduler. Since the multi-user diversity gain decreases

as L increases (due to channel hardening [40]), the wireless multicast gain starts to

dominate the achieved throughput for large values of L, which accounts for the better

performance of the worst user scheduler.

2.4 Numerical Results

We now present simulation results that validate our theoretical claims. Our re-

sults were obtained through Monte-Carlo simulations and were averaged over 10000

iterations. The power constraint P is taken to be unity. A comparison of the through-

put of all the scheduling schemes proposed in Section 2.2 is presented in Fig. 2.1 for

increasing values of N . Although the incremental redundancy scheme outperforms

the cooperative multicast scheme for small values of N , it is clear that the latter even-

tually outperforms the former for large values of N (N > 45). The corresponding

delay-comparison of the proposed schedulers is presented in Fig. 2.2. It is clear that

the simulation results follow the same trends that were predicted by our asymptotic

analysis. In Fig. 2.3, we present a comparison of the throughput of the best and worst
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user schedulers for the multi-transmit antenna case discussed in Section 2.3. As pre-

dicted by our analysis, the worst user scheduler outperforms the best user scheduler

even for the L = 2 case. It is also clear that the throughput scaling of the worst user

scheduler is almost linear for large values of L (L ≥ 10). Finally, we observe that

the utility of our asymptotic analysis is manifested in its accurate predictions even

with the relatively small number of users used in our simulations (i.e., in the order of

N = 10).
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Figure 2.1: Comparison of the average throughput of the proposed static multicast
schedulers (best, worst and median user schemes), incremental redundancy multicast
and cooperative multicast
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CHAPTER 3

FEEDBACK FOR SECRECY: THE FADING
EAVESDROPPER CHANNEL

In this chapter, we reveal the importance of feedback in facilitating secure commu-

nication over wireless channels. We consider the secure transmission of information

over an ergodic fading channel in the presence of an eavesdropper. We adopt the no-

tion of information-theoretic secrecy, which was first introduced by Shannon in [11].

This strong notion of secrecy does not rely on any assumptions on the computational

resources of the eavesdropper. More specifically, perfect information-theoretic secrecy

requires that I(W ; Z) = 0, i.e., the signal Z received by the eavesdropper does not

provide any additional information about the transmitted message W .

Shannon considered a scenario where both the legitimate receiver and the eaves-

dropper have direct access to the transmitted signal [11]. Under this model, he proved

a negative result implying that the achievability of perfect secrecy requires the entropy

of the private key K, used to encrypt the message W , to be larger than or equal to

the entropy of the message itself (i.e., H(K) ≥ H(W ) for perfect secrecy). However,

it was later shown by Wyner in [12] that this negative result was a consequence of

the over-restrictive model used in [11]. Wyner introduced the wiretap channel which

accounts for the difference in the two noise processes, as observed by the destination
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and wiretapper. In this model, the wiretapper has no computational limitations and

is assumed to know the codebook used by the transmitter. Under the assumption

that the wiretapper’s signal is a degraded version of the destination’s signal, Wyner

characterized the tradeoff between the information rate to the destination and the

level of ignorance at the wiretapper (measured by its equivocation), and showed that

it is possible to achieve a non-zero secrecy capacity. This work was later extended

to non-degraded channels by Csiszár and Körner [14], where it was shown that if the

main channel is less noisy or more capable than the wiretapper channel, then it is

possible to achieve a non-zero secrecy capacity.

More recently, the effect of slow fading on the secrecy capacity was studied in

[41, 42]. In these works, it is assumed that the fading is quasi-static which leads to

an alternative definition of outage probability, wherein secure communications can

be guaranteed only for the fraction of time when the main channel is stronger than

the channel seen by the eavesdropper. This performance metric appears to have an

operational significance only in delay sensitive applications with full Channel State

Information (CSI). The absence of CSI sheds doubt on the operational significance of

outage-based secrecy since it limits the ability of the source to know which parts of

the message are decoded by the eavesdropper.

In this chapter, we focus on delay-tolerant applications which allow for the adop-

tion of an ergodic version of the slow fading channel, instead of the outage-based

formulation. Quite interestingly, we show that, under this model, one can achieve a

perfectly secure non-zero rate even when the eavesdropper channel is more capable

than the legitimate channel on the average.
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3.1 System Model

The system model is illustrated in Fig. 3.1. The source S communicates with a

destination D (legitimate receiver) in the presence of an eavesdropper E. During any

coherence interval i, the signal received by the destination and the eavesdropper are

given by, respectively

y(i) = gM(i)x(i) + wM(i),

z(i) = gE(i)x(i) + wE(i),

where gM(i), gE(i) are the channel gains from the source to the legitimate receiver

(main channel) and the eavesdropper (eavesdropper channel) respectively, and wM(i),

wE(i) represent the i.i.d additive Gaussian noise with unit variance at the destination

and the eavesdropper respectively. We denote the fading power gains of the main

and eavesdropper channels by hM (i) = |gM(i)|2 and hE(i) = |gE(i)|2 respectively. We

assume that both channels experience block fading, where the channel gains remain

constant during each coherence interval and change independently from one coherence

interval to the next. The fading process is assumed to be ergodic with a bounded

continuous distribution. Moreover, the fading coefficients of the destination and the

eavesdropper in any coherence interval are assumed to be independent of each other.

We further assume that the number of channel uses n1 within each coherence interval

is large enough to allow for invoking random coding arguments (this assumption is

instrumental in our achievability proofs).

The source wishes to send a message W ∈ W = {1, 2, · · · , M} to the destination.

An (M, n) code consists of the following elements: 1) a stochastic encoder fn(.) at the
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Figure 3.1: The Fading Channel with an Eavesdropper

source that maps the message7 w to a codeword xn ∈ X n, and 2) a decoding function

φ: Yn → W at the legitimate receiver. The average error probability of an (M, n)

code at the legitimate receiver is defined as

P n
e =

∑

w∈W

1

M
Pr(φ(yn) 6= w|w was sent). (3.1)

The equivocation rate Re at the eavesdropper is defined as the entropy rate of the

transmitted message conditioned on the available CSI and the channel outputs at the

eavesdropper, i.e.,

Re
∆
=

1

n
H(W |Zn, hn

M , hn
E) , (3.2)

where hn
M = {hM(1), · · · , hM(n)} and hn

E = {hE(1), · · · , hE(n)} denote the channel

power gains of the legitimate receiver and the eavesdropper in n coherence intervals,

respectively. It indicates the level of ignorance of the transmitted message W at the

eavesdropper. The perfect secrecy rate Rs is said to be achievable if for any ε > 0,

7The realizations of the random variables W, X, Y, Z are represented by w, x, y, z respectively.
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there exists a sequence of codes (2nRs, n) such that for any n ≥ n(ε), we have

P n
e ≤ ε,

Re =
1

n
H(W |Zn, hn

M , hn
E) ≥ Rs − ε.

The secrecy capacity Cs is defined as the maximum achievable perfect secrecy rate,

i.e.,

Cs
∆
= sup

P n
e ≤ε

Rs . (3.3)

Throughout this chapter, we assume that the CSI is known at the destination

perfectly. Based on the available CSI, the transmitter adapts its transmission power

and rate to maximize the perfect secrecy rate subject to a long-term average power

constraint P̄ .

3.2 Full CSI Feedback

Here we assume that at the beginning of each coherence interval, the transmitter

knows the channel states of the legitimate receiver and the eavesdropper perfectly.

When hM and hE are both known at the transmitter, one would expect the optimal

scheme to allow for transmission only when hM > hE, and to adapt the transmitted

power according to the instantaneous values of hM and hE. The following result

formalizes this intuitive argument.

Theorem 10. When the channel gains of both the legitimate receiver and the eaves-

dropper are known at the transmitter, the secrecy capacity is given by

C(F )
s = max

P (hM ,hE)

∫ ∞

0

∫ ∞

hE

[

log

(
1 + hMP (hM , hE)

1 + hEP (hM , hE)

)]

f(hM)f(hE)dhMdhE, (3.4)

such that E{P (hM , hE)} ≤ P̄ . (3.5)
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Proof. A detailed proof of achievability and the converse is provided in Appendix B.1.

Here, we outline the scheme used in the achievability part. In this scheme, the source

transmits information only when hM > hE, and uses the power allocation policy

P (hM , hE) that satisfies the average power constraint (3.5). Moreover, the codeword

rate at each instant is set to be log (1 + hMP (hM , hE)), which varies according to the

instantaneous channel gains. The achievable perfect secrecy rate at any instant is

then given by [log (1 + hMP (hM , hE)) − log (1 + hEP (hM , hE))]+. Averaging over all

fading realizations, we get the average achievable perfect secrecy rate to be

R(F )
s =

∫∫ [

log

(
1 + hMP (hM , hE)

1 + hEP (hM , hE)

)]+

f(hM)f(hE)dhMdhE

=

∫ ∞

0

∫ ∞

hE

[

log

(
1 + hMP (hM , hE)

1 + hEP (hM , hE)

)]

f(hM)f(hE)dhMdhE .

One can then optimize over all feasible power control policies P (hM , hE) to maximize

the perfect secrecy rate.

We now derive the optimal power allocation policy that achieves the secrecy ca-

pacity under the full CSI assumption. It is easy to check that the objective function

is concave in P (hM , hE), and hence, by using the Lagrangian maximization approach

for solving (3.4), we get the following optimality condition

∂R
(F )
s

∂P (hM , hE)
=

hM

1 + hMP (hM , hE)
− hE

1 + hEP (hM , hE)
− λ = 0,

whose solution is

P (hM , hE) =
1

2





√
(

1

hE
− 1

hM

)2

+
4

λ

(
1

hE
− 1

hM

)

−
(

1

hM
+

1

hE

)


 . (3.6)

If for some (hM , hE), the value of P (hM , hE) obtained from (3.6) is negative, then it

follows from the concavity of the objective function w.r.t. P (hM , hE) that the optimal
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value of P (hM , hE) is 0. Thus the optimal power allocation policy at the transmitter

is given by

P (hM , hE) =
1

2





√
(

1

hE
− 1

hM

)2

+
4

λ

(
1

hE
− 1

hM

)

−
(

1

hM
+

1

hE

)




+

, (3.7)

where [x]+ = max{0, x}, and the parameter λ is a constant that satisfies the power

constraint in (3.5) with equality. The secrecy capacity is then determined by substi-

tuting this optimal power allocation policy for P (hM , hE) in (3.4).

3.3 Main Channel CSI Feedback

In this section, we assume that at the beginning of each coherence interval, the

transmitter only knows the CSI of the main channel (legitimate receiver).

3.3.1 Optimal Power Allocation

We first characterize the secrecy capacity under this scenario in the following

theorem.

Theorem 11. When only the channel gain of the legitimate receiver is known at the

transmitter, the secrecy capacity is given by

C(M)
s = max

P (hM )

∫∫ [

log

(
1 + hMP (hM)

1 + hEP (hM)

)]+

f(hM)f(hE)dhMdhE , (3.8)

such that E{P (hM)} ≤ P̄ . (3.9)

Proof. A detailed proof is provided in Appendix B.2. We use the following variable

rate transmission scheme to show achievability. During a coherence interval with

main channel fading state hM , the transmitter transmits codewords at rate log(1 +

hMP (hM)) with power P (hM). This variable rate scheme relies on the assumption of
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large coherence intervals and ensures that when hE > hM , the mutual information

between the source and the eavesdropper is upper bounded by log(1 + hMP (hM)).

When hE ≤ hM , this mutual information will be log(1 + hEP (hM)). Averaging over

all the fading states, the average rate of the main channel is given by

∫∫

log (1 + hMP (hM)) f(hM)f(hE)dhMdhE,

while the information accumulated at the eavesdropper is

∫∫

log (1 + min{hM , hE}P (hM)) f(hM)f(hE)dhMdhE.

Hence for a given power control policy P (hM), the achievable perfect secrecy rate is

given by

R(M)
s =

∫∫ [

log

(
1 + hMP (hM)

1 + hEP (hM)

)]+

f(hM)f(hE)dhMdhE. (3.10)

One can then optimize over all feasible power control policies P (hM) to maximize

the perfect secrecy rate. Here we note that our secure message is hidden across the

different fading states.

We now derive the optimal power allocation policy that achieves the secrecy ca-

pacity under the main channel CSI assumption. Similar to Theorem 10, the objective

function under this case is also concave, and using the Lagrangian maximization

approach for solving (3.8), we get the following optimality condition.

∂R
(M)
s

∂P (hM)
=

hMPr (hE ≤ hM)

1 + hMP (hM)
−
∫ hM

0

(
hE

1 + hEP (hM)

)

f(hE)dhE − λ = 0,

where λ is a constant that satisfies the power constraint in (3.9) with equality. For any

main channel fading state hM , the optimal transmit power level P (hM) is determined

from the above equation. If the obtained power level turns out to be negative, then the
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optimal value of P (hM) is equal to 0. This follows from the concavity of the objective

function in (3.8) w.r.t. P (hM). The solution to this optimization problem depends

on the distributions f(hM) and f(hE). In the following, we focus on the Rayleigh

fading scenario with E{hM} = γM and E{hE} = γE in detail. With Rayleigh fading,

the objective function in (3.8) simplifies to

C(M)
s = max

P (hM )

∫ ∞

0

[ (
1 − e−(hM /γE)

)
log (1 + hMP (hM)) −

∫ hM

0

log (1 + hEP (hM))
1

γE

e−(hE/γE)dhE

]
1

γM

e−(hM/γM )dhM

= max
P (hM )

∫ ∞

0

[

log (1 + hMP (hM)) − exp

(
1

γEP (hM)

)(

Ei

(
1

γEP (hM)

)

−

Ei

(
hM

γE

+
1

γEP (hM)

))]
1

γM

e−(hM/γM )dhM , (3.11)

where

Ei(x) =

∫ ∞

x

e−t

t
dt .

Specializing the optimality conditions to the Rayleigh fading scenario, it can be shown

that the power level of the transmitter at any fading state hM is obtained by solving

the equation

(
1 − e−(hM /γE)

)
(

hM

1 + hMP (hM)

)

− λ −
(
1 − e−(hM/γE)

)

P (hM)
+

exp
(

1
γEP (hM )

)

γE(P (hM))2

[

Ei

(
1

γEP (hM)

)

− Ei

(
hM

γE

+
1

γEP (hM)

)]

= 0.

If there is no positive solution to this equation for a particular hM , then we set

P (hM) = 0. The secrecy capacity is then determined by substituting this optimal

power allocation policy for P (hM) in (3.11).

We observe that, unlike the traditional ergodic fading scenario, achieving the

optimal performance under a security constraint relies heavily on using a variable
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rate transmission strategy. This can be seen by evaluating the performance of a

constant rate strategy where a single codeword is interleaved across infinitely many

fading realizations. This interleaving will result in the eavesdropper gaining more

information, than the destination, when its channel is better than the main channel,

thereby yielding a perfect secrecy rate that is strictly smaller than that in (3.10). It

is easy to see that the achievable perfect secrecy rate of the constant rate scheme,

assuming a Gaussian codebook, is given by

max
P (hM )

∫∫ [

log

(
1 + hMP (hM)

1 + hEP (hM)

)]

f(hM)f(hE)dhMdhE ,

such that E{P (hM)} ≤ P̄ .

Unlike the two previous optimization problems, the objective function in this

optimization problem is not a concave function of P (hM). Using the Lagrangian for-

mulation, we only get the following necessary Karush-Kuhn-Tucker (KKT) conditions

for the optimal point.

P (hM)

[

λ − hM

1 + hMP (hM)
+

∫ (
hE

1 + hEP (hM)

)

f(hE)dhE

]

= 0,

λ ≥ hM

1 + hMP (hM)
−
∫ (

hE

1 + hEP (hM)

)

f(hE)dhE,

E{P (hM)} = P̄ . (3.12)

3.3.2 On/Off Power Control

We now propose a transmission policy wherein the transmitter sends information

only when the channel gain of the legitimate receiver hM exceeds a pre-determined

constant threshold τ > 0. Moreover, when hM > τ , the transmitter always uses

the same power level P . However, it is crucial to adapt the rate of transmission

43



instantaneously as log(1 + PhM) with hM . It is clear that for an average power

constraint P̄ , the constant power level used for transmission will be

P =
P̄

Pr(hM > τ)
.

Using a similar argument as in the achievable part of Theorem 11, we get the perfect

secrecy rate achieved by the proposed scheme, using Gaussian inputs, as

R(CP )
s =

∫ ∞

0

∫ ∞

τ

[

log

(
1 + hMP

1 + hEP

)]+

f(hM)f(hE)dhMdhE .

Specializing to the Rayleigh fading scenario, we get

P =
P̄

Pr(hM > τ)
= P̄ e(τ/γM ) ,

and the achievable perfect secrecy rate simplifies to

R(CP )
s =

∫ ∞

τ

∫ hM

0

[

log

(
1 + hM P̄ e(τ/γM )

1 + hEP̄ e(τ/γM )

)]
1

γM

e−(hM/γM ) 1

γE

e−(hE/γE)dhEdhM ,

which then simplifies to

R(CP )
s = e−(τ/γM ) log

(
1 + τ P̄ e(τ/γM )

)
+exp

(
1

γM P̄ e(τ/γM )

)

Ei

(
τ

γM

+
1

γM P̄ e(τ/γM )

)

+ exp

(
1

γEP̄ e(τ/γM )
− τ

γM

)[

Ei

(
τ

γE

+
1

γEP̄ e(τ/γM )

)

− Ei

(
1

γEP̄ e(τ/γM )

)]

− exp





[
1

γM
+ 1

γE

]

P̄ e(τ/γM )



Ei

([
1

γM

+
1

γE

] [

τ +
1

P̄ e(τ/γM )

])

.

One can then optimize over the threshold τ to get the maximum achievable perfect

secrecy rate.

Finally, we establish the asymptotic optimality of this on/off scheme as the avail-

able average transmission power P̄ → ∞. For the on/off power allocation policy, we

have

R(CP )
s = lim

P̄→∞

∫ ∞

τ∗

∫ hM

0

log

(
1 + hMP

1 + hEP

)

f(hM)f(hE)dhEdhM .
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Taking τ ∗ = 0, we get P = P̄ and

R(CP )
s ≥ lim

P̄→∞

∫ ∞

0

∫ hM

0

log

(
(1/P̄ ) + hM

(1/P̄ ) + hE

)

f(hM)f(hE)dhEdhM

(a)
=

∫ ∞

0

∫ hM

0

lim
P̄→∞

log

(
(1/P̄ ) + hM

(1/P̄ ) + hE

)

f(hM)f(hE)dhEdhM

=

∫ ∞

0

∫ hM

0

log

(
hM

hE

)

f(hM)f(hE)dhEdhM

= E{hM >hE}

{

log

(
hM

hE

)}

, (3.13)

where (a) follows from the Dominated Convergence Theorem, since

∣
∣
∣
∣
log

(
(1/P̄ ) + hM

(1/P̄ ) + hE

)∣
∣
∣
∣

≤
∣
∣
∣
∣
log

(
hM

hE

)∣
∣
∣
∣
, ∀P̄ when hM > hE,

and

∫ ∞

0

∫ hM

0

log

(
hM

hE

)

f(hM)f(hE)dhEdhM < ∞,

since E{hM} < ∞,
∣
∣
∣

∫ 1

0
log x dx

∣
∣
∣ = 1 < ∞ and f(hM), f(hE) are continuous and

bounded.

Now under the full CSI assumption, we have

C(F )
s = E{hM >hE}

{

log

(
1

P (hM ,hE)
+ hM

1
P (hM ,hE)

+ hE

)}

≤ E{hM >hE}

{

log

(
hM

hE

)}

. (3.14)

From (3.13) and (3.14), it is clear that the proposed on/off power allocation policy

that uses only the main channel CSI achieves the secrecy capacity under the full CSI

assumption as P̄ → ∞. Thus the absence of eavesdropper CSI at the transmitter

does not reduce the secrecy capacity at high SNR values.

3.4 ARQ Feedback

In Sections 3.2 and 3.3, we assumed the presence of perfect CSI feedback to

the transmitter. This is an idealistic feedback scenario whose performance serves as

an upper bound on the performance of other practical feedback scenarios. In this
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section, we assume that the transmitter does not know the CSI of both the main and

eavesdropper channels. We focus on a simple ARQ feedback scenario and quantify

the significant fraction of gains obtained though minimal ARQ feedback, as compared

to that possible with perfect CSI feedback. We assume that the legitimate receiver is

capable of perfectly feeding back ARQ bits to the source, which convey whether its

decoding was successful or not. We further assume that the feedback channel is public

and hence the ARQ bits transmitted by the legitimate receiver are also received by

the eavesdropper.

We propose two transmission schemes, viz. Repetition ARQ (Rep-ARQ) and In-

cremental Redundancy ARQ (IR-ARQ), that exploit the ARQ feedback to facilitate

secure communication. In the Rep-ARQ scheme, the transmitter repeats codewords

until it receives an ACK from the legitimate receiver, while the destination employs

Maximal Ratio Combining (MRC) to decode the transmitted message from the ob-

servations accumulated in all the feedback rounds. The destination feeds back an

ACK only when its decoding is successful and feeds back a NACK otherwise. In the

IR-ARQ scheme, the transmitter, upon receiving a NACK, generates a new codebook

and transmits new redundancy bits instead of merely repeating the codeword. The

destination employs joint decoding across the ARQ rounds to recover the transmit-

ted message. It is important to note here that the transmissions in each ARQ round

also help the eavesdropper to gain more information about the transmitted message,

since it can also employ MRC or joint decoding techniques. However, while the ARQ

feedback ensures that the decoding is always successful at the destination, the decod-

ing at the eavesdropper might not always be successful. This important observation

can be leveraged by the destination to gain an advantage over the eavesdropper and
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achieve non-zero perfect secrecy rates, even when the eavesdropper channel is better

than the main channel on the average.

We now characterize the perfect secrecy rates achieved by the proposed IR-ARQ

and Rep-ARQ schemes in the following theorem.

Theorem 12. The proposed IR-ARQ scheme achieves the perfect secrecy rate

R(IR)
s =

E

[(

R −∑L
k=1 log (1 + hE,kP )

)+
]

E[L]
, (3.15)

while the Rep-ARQ scheme achieves

R(Rep)
s =

E

[(

R − log
(

1 +
∑L

k=1 hE,kP
))+

]

E[L]
, (3.16)

where L is a random variable denoting the number of transmission rounds required

for the successful decoding of any particular block at the destination.

Proof. Refer Appendix B.3.

We now focus on evaluating the achievable perfect secrecy rate for the Rep-ARQ

scheme when the main and eavesdropper channel gains are Rayleigh distributed with

E[hM ] = 1 and E[hE] = 1. The probability distribution of the number of ARQ rounds

L required for successful decoding is given by

Pr(No. of ARQ rounds = `)

= Pr

(

log

(

1 +

`−1∑

i=1

hM,iP

)

< R ≤ log

(

1 +
∑̀

i=1

hM,iP

))

= Pr

(
`−1∑

i=1

hM,i <
eR − 1

P
≤
∑̀

i=1

hM,i

)

=

∫ C1

0

f (`−1)(x) Pr (hM,` ≥ C1 − x) dx ,
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where C1 = (eR − 1)/P , and f (`)(x) represents the Chi-square distribution of the

random variable
∑`

i=1 hM,i with 2` degrees of freedom, which is given by

f (`)(x) =
e−xx(`−1)

(` − 1)!
, x > 0.

Hence

Pr(L = `) =

∫ C1

0

e−xx(`−2)

(` − 2)!

(
e−(C1−x)

)
dx =

e−C1C
(`−1)
1

(` − 1)!
.

The expected number of required ARQ rounds is thus given by

E[L] =

∞∑

`=1

`

(

e−C1C
(`−1)
1

(` − 1)!

)

= 1 + C1 = 1 +

(
eR − 1

P

)

. (3.17)

We now need to characterize the quantity

S = E





(

R − log

(

1 +
L∑

i=1

hE,iP

))+


 ,

where the expectation is taken with respect to both the number of ARQ rounds L

and the eavesdropper channels {hE,i}. Since L depends only on the distribution of

the main channel, which is independent of the eavesdropper channel, we get

S =

∞∑

`=1

Pr(L = `) E{hE}





(

R − log

(

1 +
∑̀

i=1

hE,iP

))+




=

∞∑

`=1

(

e−C1C
(`−1)
1

(` − 1)!

)[∫ C1

0

(R − log(1 + xP ))
e−xx(`−1)

(` − 1)!
dx

]

=
∞∑

`=1

(

e−C1C
(`−1)
1

(` − 1)!

){

R

[

1 − e−C1

(
`−1∑

j=0

Cj
1

j!

)]

−
∫ C1

0

log(1 + xP )e−xx(`−1)

(` − 1)!
dx

}

. (3.18)

Thus, from (3.16), the perfect secrecy rate achieved by the Rep-ARQ scheme is given

by

R(Rep)
s =

S

E[L]
, (3.19)

which can be obtained from (3.17) and (3.18).
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3.5 Numerical Results

As an additional benchmark, we first obtain the performance when the trans-

mitter does not have any knowledge of both the main and eavesdropper channels

(only receiver CSI). In this scenario, the transmitter is unable to exploit rate/power

adaptation and always transmits with power P̄ . It is straightforward to see that the

achievable perfect secrecy rate in this scenario (using Gaussian inputs) is given by

R(R)
s =

[∫ ∞

0

∫ ∞

0

log

(
1 + hM P̄

1 + hEP̄

)

f(hM)f(hE)dhMdhE

]+

=

[∫ ∞

0

log
(
1 + hM P̄

)
f(hM)dhM −

∫ ∞

0

log
(
1 + hEP̄

)
f(hE)dhE

]+

,

which reduces to the following for the Rayleigh fading scenario

R(R)
s =

[

exp

(
1

γM P̄

)

Ei

(
1

γM P̄

)

− exp

(
1

γEP̄

)

Ei

(
1

γEP̄

)]+

.

Thus when γE ≥ γM , R
(R)
s = 0. The results for the Rayleigh normalized-symmetric

case (γM = γE = 1), under the different transmitter CSI assumptions, are presented

in Fig. 3.2. It is clear that the performance of the on/off power control scheme is very

close to the secrecy capacity (with only main channel CSI) for a wide range of SNRs

and, as expected, approaches the secrecy capacities, under both the full CSI and main

channel CSI assumptions, at high values of SNR. The performance of the constant rate

scheme is much worse than the other schemes that employ rate adaptation. Here we

note that the performance curve for the constant rate scheme might be a lower bound

to the secrecy capacity (since the KKT conditions are necessary but not sufficient

for non-convex optimization). We then consider an asymmetric scenario, wherein

the eavesdropper channel is more capable than the main channel, with γM = 1 and

γE = 2. The performance results for this scenario are plotted in Fig. 3.3. Again
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it is clear from the plot that the performance of the on/off power control scheme is

optimal at high values of SNR, and that rate adaptation schemes yield higher perfect

secrecy rates than constant rate transmission schemes.

We now present simulation results for the proposed schemes that rely only on

minimal ARQ feedback. We again consider a symmetric Rayleigh fading scenario with

γM = γE = 1. A comparison of the perfect secrecy rates achieved by the proposed

IR-ARQ and Rep-ARQ schemes, for different average SNR values, is provided in

Fig. 3.4. At each SNR level, we first compute the perfect secrecy rates in (3.15) and

(3.16) for different first round rates R, and then pick the optimal first round rate

R∗ that yields the highest perfect secrecy rate for each scheme. It is clear from the

plot that IR-ARQ outperforms Rep-ARQ at all considered SNR values. We note that

this fact is not obvious since the IR-ARQ transmissions, which perform better than

Rep-ARQ transmissions for the scenario without secrecy constraints, help both the

legitimate receiver and the eavesdropper. The achievable perfect secrecy rates for the

asymmetric scenario (γM = 1, γE = 2) are provided in Fig. 3.5. Again it is clear

from the plot that IR-ARQ is superior to Rep-ARQ for the considered range of SNRs.

More importantly, both the proposed schemes achieve positive perfect secrecy rates

even when the eavesdropper channel is better than the main channel on the average,

thereby highlighting the positive impact of minimal ARQ feedback on the secrecy

capacity of slow fading channels.
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Figure 3.2: Comparison of the perfect secrecy rates achieved by the proposed schemes
(under different assumptions on the available transmitter CSI) for the symmetric
scenario γM = γE = 1
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Figure 3.3: Comparison of the perfect secrecy rates achieved by the proposed schemes
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and Rep-ARQ schemes for the symmetric scenario γM = γE = 1
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Figure 3.5: Comparison of the perfect secrecy rates achieved by the proposed IR-ARQ
and Rep-ARQ schemes for the asymmetric scenario γM = 1 and γE = 2
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CHAPTER 4

FEEDBACK FOR RELIABILITY: THE ARQ CHANNEL
WITH DELAY DEADLINES

In this chapter, we demonstrate the impact of feedback on the reliability (in terms

of the achievable error exponents) of communication protocols. We consider channels

with strict delay deadline constraints and quantify the gains offered by the availability

of minimal ARQ feedback.

Shannon proved a negative result in [19] that the capacity of a discrete memory-

less channel cannot be increased by using feedback. However, it was later shown by

Burnashev [20] that feedback does increase the achievable error exponents. In [20],

Burnashev characterized the maximum error exponent achievable over discrete mem-

oryless channels (DMCs) in the presence of perfect output feedback. Interestingly,

Forney later showed in [21] that the presence of even one bit of feedback can in-

crease the error exponent significantly. He proposed a memoryless decoding scheme,

based on the erasure decoding principle, which achieves a significantly higher error

exponent than that achievable through maximum likelihood (ML) decoding without

feedback [43]. In Forney’s scheme, the transmitter sends codewords of block length

N . After receiving each block of N symbols, the receiver uses a reliability-based
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erasure decoder and feeds back one ACK/NACK bit indicating whether it has ac-

cepted/erased the received block, respectively. If the transmitter receives a NACK

message, it then re-transmits the same N -symbol codeword. After each transmission

round, the receiver attempts to decode the message using only the latest N received

symbols, and discards the symbols received previously. This process is repeated un-

til the receiver decides to accept the latest received block and transmits an ACK

message back to the transmitter. It is intuitive to expect a better performance from

schemes that do not allow for discarding the previous observations at the decoder, as

compared with memoryless decoding.

In this chapter, we consider one variant of such schemes, i.e., Incremental Redun-

dancy ARQ (IR-ARQ) [22] and characterize its achievable error exponents under a

strict delay deadline constraint, which is imposed in the form of an upper bound L

on the maximum number of ARQ rounds.

4.1 The ARQ Channel

We first give a brief overview of the memoryless decoding scheme proposed by

Forney in [21]. The transmitter sends a codeword xm of length N , where m ∈

{1, · · · , M}. Here M represents the total number of messages at the transmitter,

each of which is assumed to be equally likely. The transmitted codeword reaches

the receiver after passing through a memoryless channel with transition probability

p(y|x). We denote the received sequence as y. The receiver uses an erasure decoder

which decides that the transmitted codeword was xm iff y ∈ Rm, where

Rm =

{

y :
p(y|xm)

∑

k 6=m p(y|xk)
≥ eNT

}

, (4.1)
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where T ≥ 0 is a controllable threshold parameter. If (4.1) is not satisfied for any

m ∈ {1, · · · , M}, then the receiver declares an erasure and sends a NACK bit back

to the transmitter. On receiving a NACK bit, the transmitter repeats the codeword

corresponding to the same information message. We call such a retransmission as

an ARQ round. The decoder discards the earlier received sequence and uses only

the latest received sequence of N symbols for decoding (memoryless decoding). It

again applies the condition (4.1) on the newly received sequence and again asks for a

retransmission in the case of an erasure. When the decoder does not declare an era-

sure, the receiver transmits an ACK bit back to the transmitter, and the transmitter

starts sending the next message. It is evident that this scheme allows for an infinite

number of ARQ rounds. This scheme can also be implemented using only one bit

of feedback (per codeword) by asking the receiver to only send back ACK bits, and

asking the transmitter to keep repeating continuously until it receives an ACK bit.

Since the number of needed ARQ rounds for the transmission of a particular message

is a random variable, we define the error exponent of this scheme as follows.

Definition 13. The error exponent E(R) of a variable-length coding scheme is defined

as

E(R) = lim sup
N→∞

− log Pr(E)

τ
, (4.2)

where Pr(E) denotes the average probability of error, R denotes the average trans-

mission rate, and τ = (ln M/R) is the average decoding delay of the scheme, when

codewords of block length N are used in each ARQ transmission round.
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The probability of error of the decoder in (4.1), after each ARQ round, is given

by [21]

Pr(ε) =
∑

m

∑

k 6=m

∑

y∈Rk

p(y,xm) ,

and the probability of erasure is given by

Pr(X) =




∑

m

∑

y/∈Rm

p(y,xm)



 − Pr(ε) .

It is shown in [21] that these probabilities satisfy

Pr(X) ≤ e−NE1(R1 ,T ) and Pr(ε) ≤ e−NE2(R1,T ) , (4.3)

where R1 = (ln M/N) denotes the rate of the first transmission round,

E2(R1, T ) = E1(R1, T ) + T, (4.4)

and E1(R1, T ) is given at high rates by [21]

E1(R1, T ) = max
0≤s≤ρ≤1,p

Eo(s, ρ,p) − ρR1 − sT, (4.5)

Eo(s, ρ,p) = − log

∫ (∫

p(x)p(y|x)(1−s)dx

)(∫

p(x)p(y|x)(s/ρ)dx

)ρ

dy, (4.6)

and at low rates by

E1(R1, T ) = max
0≤s≤1,ρ≥1,p

Ex(s, ρ,p) − ρR1 − sT, (4.7)

Ex(s, ρ,p) = −ρ log

∫∫

p(x)p(x1)

(∫

p(y|x)(1−s)p(y|x1)
sdy

)(1/ρ)

dx dx1, (4.8)

where p = {p(x), ∀x} denotes the input probability distribution (We note that for

discrete memoryless channels, the integrals in (4.6) and (4.8) are replaced by sum-

mations). The average decoding delay τ of the memoryless decoding scheme is given
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by

τ =
∞∑

k=1

kN Pr(Transmission stops after k ARQ rounds)

=

∞∑

k=1

kN [Pr(X)](k−1)[1 − Pr(X)] =
N

1 − Pr(X)
,

which implies that the average effective transmission rate is given by

R =
ln M

τ
=

(
ln M

N

)

[1 − Pr(X)] = R1[1 − Pr(X)] . (4.9)

It is clear from (4.3) and (4.9) that R → R1 as N → ∞ if E1(R1, T ) > 0. The overall

average probability of error can be now computed as

Pr(E) =

∞∑

k=1

[Pr(X)](k−1) Pr(ε) = Pr(ε) [1 + o(1)] , (4.10)

where the second equality follows from (4.3) when E1(R1, T ) > 0. It is, therefore,

clear that the error exponent achieved by the memoryless decoding scheme is

E(R) = lim sup
N→∞

− log (Pr(ε)[1 + o(1)])

τ
≥ E2(R, T ).

It is shown in [21] that choosing the threshold T such that E1(R1, T ) → 0 maximizes

the exponent E2(R1, T ) while ensuring that R → R1 as N → ∞. This establishes

the fact that the memoryless decoding scheme achieves the feedback error exponent

EF (R) defined as

EF (R) , lim
E1(R,T )→0

E2(R, T ) = lim
E1(R,T )→0

T . (4.11)

At this point, it is interesting to investigate whether a better error exponent

can be achieved by employing more complex receivers which exploit observations

from previous ARQ rounds in decoding (instead of discarding such observations as in

memoryless decoding). Unfortunately, it is easy to see that this additional complexity
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does not yield a better exponent in the original setup considered by Forney [21]. The

reason is that, as shown in (4.10), the overall probability of error in this setup is

dominated by the probability of error Pr(ε) in the first transmission round. So,

while our more complex decoding rule might improve the probability of error after

subsequent rounds, this improvement does not translate into a better error exponent.

In the following section, however, we show that in scenarios where a strict deadline

is imposed on the maximum number of feedback rounds, significant gains in the

error exponent can be reaped by properly exploiting the received observations from

previous ARQ rounds (along with the appropriate encoding strategy).

4.2 ARQ with a Deadline

In many practical systems, it is customary to impose an upper bound L on the

maximum number of ARQ rounds (in our notation, L ≥ 2 since we include the

first round of transmission in the count). Such a constraint can be interpreted as a

constraint on the maximum allowed decoding delay or a deadline constraint. With

this constraint, it is obvious that the decoder can no longer use the rule in (4.1) during

the Lth ARQ round. Therefore, at the Lth round, the decoder employs the maximum

likelihood (ML) decoding rule to decide on the transmitted codeword. We denote the

probability of error of the ML decoder by Pr(ML)(ε).

4.2.1 Memoryless Decoding

The following theorem characterizes lower and upper bounds on the error exponent

achieved by the memoryless decoding scheme, under the deadline constraint L.
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Theorem 14. The error exponent EMD(R, L) achieved by memoryless decoding, un-

der a deadline constraint L, satisfies8 (for 0 ≤ R ≤ C)

Er(R)+(L−1)

[

max
0≤s≤ρ≤1,p

(
Eo(s, ρ,p) − ρR − sEr(R)

1 + s(L − 2)

)]

≤ EMD(R, L) ≤ LEsp(R) ,

(4.12)

where Er(R) and Esp(R) denote the random coding and sphere packing exponents of

the memoryless channel, and Eo(s, ρ,p) is as given in (4.6).

Proof. The average decoding delay of memoryless decoding is given by

τ =

(
L−1∑

k=1

kN [Pr(X)](k−1)[1 − Pr(X)]

)

+ LN [Pr(X)](L−1)

=

(
L−1∑

k=0

(k + 1)N [Pr(X)]k

)

−
(

L−1∑

k=1

kN [Pr(X)]k

)

= N

(
L−1∑

k=0

[Pr(X)]k

)

= N [1 + o(1)] , (4.13)

where the last equality follows from (4.3) when E1(R1, T ) > 0. Thus the average

effective transmission rate is given by

R =
ln M

τ
=

ln M

N [1 + o(1)]
→ R1,

as N → ∞ when E1(R1, T ) > 0. The average probability of error is given by

PrMD(E) =

L−1∑

k=1

[Pr(X)](k−1) Pr(ε) + [Pr(X)](L−1) Pr(ML)(ε)

= Pr(ε) [1 + o(1)] + [Pr(X)](L−1) Pr(ML)(ε) (4.14)

≤ e−N [E1(R1,T )+T ] [1 + o(1)] + e−N [Er(R1)+(L−1)E1(R1,T )] , (4.15)

8We note that a tighter lower bound may be obtained by using the expurgated exponent Eex(R)
instead of the random coding exponent Er(R) at low rates. This observation will be used when
generating numerical results.
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where the inequality follows from (4.3) and the random coding upper bound on the

ML decoding error probability [43]. Letting E1(R1, T ) → 0 and maximizing T as

before, we get the following error exponent

EMD(R, L) = lim sup
N→∞

− ln PrMD(E)

τ
≥ min{EF (R), Er(R)} = Er(R),

since the feedback exponent EF (R) is known to be greater than the random coding

exponent Er(R). Thus by setting E1(R1, T ) → 0, as suggested by intuitive reasoning,

we find that memoryless decoding does not give any improvement over ML decoding

without feedback. However, we can get better performance by optimizing the expres-

sion in (4.15) w.r.t T without letting E1(R1, T ) → 0. From (4.15), it is clear that the

optimal value of the threshold T ∗ is the one that yields

E1(R1, T
∗) + T ∗ = Er(R1) + (L − 1)E1(R1, T

∗)

⇒ T ∗ = Er(R1) + (L − 2)E1(R1, T
∗) . (4.16)

Using this optimal value of T ∗ in (4.5) and solving for E1(R1, T
∗), we get

E1(R1, T
∗) = max

0≤s≤ρ≤1,p

(
Eo(s, ρ,p) − ρR1 − sEr(R1)

1 + s(L − 2)

)

. (4.17)

Since EF (R1) > Er(R1), we have E1(R1, T
∗) > 0 and hence R → R1 as N → ∞.

Thus the error exponent of memoryless decoding is lower bounded by

EMD(R, L) ≥ E2(R, T ∗) = E1(R, T ∗) + T ∗ = Er(R) + (L − 1)E1(R, T ∗)

= Er(R) + (L − 1)

[

max
0≤s≤ρ≤1,p

(
Eo(s, ρ,p) − ρR − sEr(R)

1 + s(L − 2)

)]

. (4.18)

Since E1(R, T ∗) > 0, it is clear that the optimal threshold T ∗ satisfies 0 ≤ T ∗ <

EF (R) and thus the lower bound on EMD(R, L) in (4.18) is smaller than the feedback

exponent EF (R).
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We now derive an upper bound on EMD(R, L) from (4.14) as follows.

PrMD(E) = Pr(ε) [1 + o(1)] + [Pr(X)](L−1) Pr(ML)(ε)

≥ [Pr(X)](L−1) Pr(ML)(ε)

≥ [Pr(X)](L−1)
(
e−NEsp(R1)

)
, (4.19)

where the last inequality follows from the sphere-packing lower bound on the ML

decoding error probability [43]. It is easy to see that the probability of erasure Pr(X)

of the decoder in (4.1) decreases when the threshold parameter T is decreased. Thus

the probability of erasure Pr(X)|T=0 serves as a lower bound on Pr(X) for any T > 0.

In [44], upper and lower bounds on the erasure and error probabilities are derived

using a theorem by Shannon et al. in [45]. From eqns. (10) and (11) in [44], we have

1

4M

M∑

m=1

exp
[

µm(s) − sµ
′

m(s) − s
√

2µ′′

m(s)
]

< Pr(X) + Pr(ε)

≤ 1

M

M∑

m=1

exp
[

µm(s) − sµ
′

m(s)
]

,

and

1

4M

M∑

m=1

exp
[

µm(s) + (1 − s)µ
′

m(s) − (1 − s)
√

2µ′′

m(s)
]

< Pr(ε)

≤ 1

M

M∑

m=1

exp
[

µm(s) + (1 − s)µ
′

m(s)
]

,

where

µm(s) = ln

∫

p(y|xm)(1−s)

[
∑

m1 6=m

p(y|xm1)

]s

dy .

It is clear from equation (8) in [44] that the threshold parameter T is related to

the parameter µm(s) by µ
′

m(s) = −NT . Thus the condition T = 0 corresponds to

the condition µ
′

m(s) = 0. Moreover, it is shown in [44] that µm(s) and µ
′′

m(s) are
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also proportional to N . Using this fact and the condition µ
′

m(s) = 0 in the above

expressions for the upper and lower bounds on Pr(X) and Pr(ε), we get

1

4M

M∑

m=1

exp

[

µm(s)

(

1 + o

(
1√
N

))]

< Pr(X) + Pr(ε) ≤ 1

M

M∑

m=1

exp [µm(s)] ,

(4.20)

and

1

4M

M∑

m=1

exp

[

µm(s)

(

1 + o

(
1√
N

))]

< Pr(ε) ≤ 1

M

M∑

m=1

exp [µm(s)] . (4.21)

It is clear from (4.20) and (4.21) that when T = 0, the exponents of the upper

and lower bounds coincide as N → ∞, and more importantly, the exponent of the

erasure probability Pr(X) is the same as that of the error probability Pr(ε). These

exponents are further equal to the exponent of the ML decoding error probability

since Pr(ε) ≤ Pr(ML)(ε) ≤ Pr(ε) + Pr(X). Using this fact and the sphere-packing

lower bound on the ML decoding error probability in (4.19), we get

PrMD(E) ≥ e−NLEsp(R1) ⇒ EMD(R, L) ≤ LEsp(R) ,

since R → R1 as N → ∞.

From Theorem 14, it is clear that ARQ with memoryless decoding does not achieve

Forney’s error exponent EF (R) when the maximum number of ARQ rounds L is

constrained, at least at high rates for which LEsp(R) < EF (R). As expected, when

L → ∞, the lower bound on the error exponent in (4.12) becomes

lim
L→∞

EMD(R, L) ≥ max
0≤s≤ρ≤1,p

(
Eo(s, ρ,p) − ρR

s

)

= EF (R).

4.2.2 Incremental Redundancy ARQ

We now derive a lower bound on the error exponent of incremental redundancy

ARQ. In IR-ARQ, the transmitter, upon receiving a NACK message, transmits N
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new coded symbols (derived from the same message). Since our results hinge on

random coding arguments, these new symbols are obtained as i.i.d. realizations from

the probability distribution that maximizes the error exponents for erasure decoding9.

The decoder does not discard the received observations in the case of an erasure and

uses the received sequences of all the ARQ rounds jointly to decode the transmitted

message. The following erasure decoding rule is employed by the receiver: After the

kth ARQ round, the decoder decides on codeword xm iff y ∈ R′

m, where

R′

m =

{

y :
p(y|xm)

∑

i6=m p(y|xi)
≥ ekNTk

}

, (4.22)

and y, {xi} are vectors of length kN , which contain the received sequences and

transmitted codewords (respectively) corresponding to the k ARQ rounds. If no

codeword satisfies the above condition, then an erasure is declared by the decoder. It

is clear that our formulation allows for varying the threshold Tk as a function of the

number of ARQ rounds k. Using thresholds {Tk} that decrease with the number of

ARQ rounds k makes intuitive sense since the probability of error will be dominated by

small values of k (initial ARQ rounds), and hence, one needs to use higher thresholds

for these k values to reduce the overall probability of error. We let Ek denote the

event that the decoder declares an erasure during all the first k ARQ rounds. We

also let E0 = φ (the empty set). The probability of erasure and error of the decoder

in the kth ARQ round will thus be denoted by Pr(k)(X|E(k−1)) and Pr(k)(ε|E(k−1)),

respectively10 . Here the subscript (k) is used to highlight the fact that the decoder

9Note that this optimal error exponent distribution for erasure decoding might not be optimal
for ML decoding. However, for the BSC, VNC and AWGN channels considered in the next section,
the optimal distributions for erasure decoding and ML decoding coincide.

10It follows from our notations that Pr(1)(X |E0) = Pr(X) and Pr(1)(ε|E0) = Pr(ε).
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uses a received sequence of length kN for decoding in the kth ARQ round. We are

now ready to state our main result in this section.

Theorem 15. The error exponent EIR(R, L) achieved by IR-ARQ, under a deadline

constraint L, is given by11

EIR(R, L) ≥ min {EF (R) , LE∗
r (R/L)} , 0 ≤ R ≤ C, (4.23)

where E∗
r (.) denotes the error exponent achieved by ML decoding under the probability

distribution that is optimal for erasure decoding.

Proof. The average decoding delay for IR-ARQ is given by

τ =
L∑

k=1

kN Pr(Transmission stops after k ARQ rounds)

=

L−1∑

k=1

kN

(
k−1∏

i=1

Pr(i)(X|E(i−1))

)

[
1 − Pr(k)(X|E(k−1))

]

+ LN

(
L−1∏

i=1

Pr(i)(X|E(i−1))

)

=
L−1∑

k=0

(k + 1)N

(
k∏

i=1

Pr(i)(X|E(i−1))

)

−
L−1∑

k=1

kN

(
k∏

i=1

Pr(i)(X|E(i−1))

)

= N

[

1 +

L−1∑

k=1

(
k∏

i=1

Pr(i)(X|E(i−1))

)]

≤ N

[

1 +
L−1∑

k=1

Pr(X)

]

≤ N [1 + LPr(X)] . (4.24)

Since Pr(X) ≤ e−NE1(R1 ,T ), it follows that τ → N (and hence the average effective

transmission rate R → R1) as N → ∞ when E1(R1, T ) > 0. The average probability

11Replacing the random coding exponent Er(R) by the expurgated exponent Eex(R) may yield a
tighter lower bound at low rates.
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of error of IR-ARQ is given by

PrIR(E) =

L∑

k=1

Pr(error in the kth ARQ round)

=
L−1∑

k=1

Pr(k)(ε, E(k−1)) + Pr
(ML)
(L) (ε, E(L−1))

≤
L−1∑

k=1

Pr(k)(ε) + Pr
(ML)
(L) (ε) ,

where Pr(k)(ε) refers to the probability of error when the decoder always waits for

kN received symbols before decoding. Following the derivation in [21], it can easily

be seen that for the thresholds {Tk} used in the decoding rule (4.22), we have

Pr(k)(X) ≤ e−kNE1(R1/k,Tk) and Pr(k)(ε) ≤ e−kN [E1(R1/k,Tk)+Tk ] . (4.25)

Using this and the fact that Pr
(ML)
(L) (ε) ≤ e−LNE∗

r (R1/L), since E∗
r (.) is the error expo-

nent achieved by ML decoding under the probability distribution that maximizes the

error exponent for erasure decoding, we can upper bound the average probability of

error of IR-ARQ by

PrIR(E) ≤
L−1∑

k=1

e−kN [E1(R1/k,Tk)+Tk] + e−LNE∗
r (R1/L) . (4.26)

Thus the error exponent achieved by IR-ARQ is lower bounded by

EIR(R, L) = lim sup
N→∞

− ln PrIR(E)

τ

≥ min
(

LE∗
r (R/L), { k[E1(R/k, Tk) + Tk] }L−1

k=1

)

.

Taking Tk = (T/k), ∀k ∈ {1, · · · , (L − 1)}, we get

EIR(R, L) ≥ min
(

LE∗
r (R/L), { kE1(R/k, T/k) + T }L−1

k=1

)

= min (LE∗
r (R/L), E1(R, T ) + T ) ,
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where the last equality follows from the fact that E1(R/k, T/k) is an increasing func-

tion of k. Letting E1(R, T ) → 0 and maximizing T , we get

EIR(R, L) ≥ min (LE∗
r (R/L), EF (R)) .

From Theorem 15, it is clear that if the deadline constraint L is large enough to

satisfy

LE∗
r (R/L) ≥ EF (R) , (4.27)

then IR-ARQ achieves the feedback exponent EF (R) at rate R. In the following

section, we quantify the gains achieved by IR-ARQ, as compared with memoryless

decoding, for specific channels.

4.3 Examples

4.3.1 The Binary Symmetric Channel

Here, we compare the error exponents achievable by memoryless decoding and

IR-ARQ over a BSC with crossover probability ε. The bounds on the error exponents

in (4.12) and (4.23) are plotted for a BSC with ε = 0.15 in Figs. 4.1 and 4.2 for

L = 2 and L = 4, respectively. The ML decoding error exponent (corresponding to

the case L = 1) and the feedback exponent EF (R) are also plotted for comparison

purposes. From Fig. 4.1, we find that when L = 2, memoryless decoding achieves

an error exponent that is strictly sub-optimal to the feedback exponent EF (R) for

all R ≥ 0.006. On the other hand, IR-ARQ achieves EF (R) for 0.18 ≤ R ≤ C.

Moreover, it performs strictly better than memoryless decoding for all R ≥ 0.057.

When L = 4, from Fig. 4.2, we find that the error exponent for the memoryless

68



decoder is strictly sub-optimal, as compared with EF (R), for R ≥ 0.141, while IR-

ARQ achieves EF (R) for all rates below capacity. Finally, we note that even when

L = 100, memoryless decoding is still strictly sub-optimal, as compared with IR-ARQ,

for all rates 0.38 ≤ R ≤ C = 0.39.

Now, we elaborate on our observation from Fig. 4.2 that L = 4 is sufficient to

achieve EF (R) with IR-ARQ when ε = 0.15. In particular, we wish to investigate the

existence of a finite value for L such that EF (R) is achieved by IR-ARQ universally

(i.e., for all 0 ≤ ε ≤ 0.5 and all rates below capacity). Towards this end, we derive an

upper bound on the minimum required deadline constraint Lreq for a given BSC(ε).

From (4.23), it is clear that Lreq is upper bounded by the minimum value of L required

to satisfy12 LEr(R/L) ≥ EF (R) for all 0 ≤ R ≤ C. We first prove the following result.

Lemma 16. A sufficient condition for ensuring that LEr(R/L) ≥ EF (R) for all rates

0 ≤ R ≤ C for a BSC is given by LEr(0) ≥ EF (0).

Proof. It has been shown in [43] that both the random coding exponent Er(R) and

the feedback exponent EF (R) are decreasing functions of R. Since

LEr(R/L) = max
0≤ρ≤1

{LEo(ρ) − ρR} , (4.28)

its slope at a given rate R is given by (following the steps in equations (5.6.28–5.6.33)

in [43])

∂ (LEr(R/L))

∂R
= − ρ∗(R) ≥ − 1 ,

where ρ∗(R) is the value of ρ that maximizes the RHS of (4.28) for rate R. For a

BSC, it is shown in [21] that the feedback exponent can be expressed as

EF (R) = (C − R) + max
ρ≥0

{Eo(ρ) − ρR} . (4.29)

12Note that E∗

r
(.) = Er(.) for the BSC, VNC and AWGN channels, since the optimal distributions

for ML decoding and erasure decoding coincide.
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Figure 4.1: Comparison of the error exponents for a Binary Symmetric Channel (BSC)
with cross-over probability ε = 0.15 and maximum number of ARQ rounds L = 2

70



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Rate R (in bits/second)

 

 

max{ E
r
(R) , E

ex
(R) }

Lower bound on E
MD

(R,4)

Upper bound on E
MD

(R,4)

IR−ARQ scheme E
IR

(R,4)

Feedback Exponent E
F
(R)

Figure 4.2: Comparison of the error exponents for a Binary Symmetric Channel (BSC)
with cross-over probability ε = 0.15 and maximum number of ARQ rounds L = 4

71



Hence the slope of EF (R) at a given rate R is given by

∂EF (R)

∂R
= −

(

1 + ρ
′
(R)
)

≤ − 1 ,

where ρ
′
(R) is the value of ρ that maximizes the RHS of (4.29) for rate R. Hence it

is clear that for any value of R, the rate of decrease of the feedback exponent EF (R)

is higher than that of LEr(R/L). It is shown in [21] that EF (C) = Er(C) = 0. Since

Er(R) is a decreasing function of R, we know that Er(C/L) > Er(C) = 0. Thus,

when R = C, we have LEr(C/L) > EF (C). Now, if the value of L is chosen such

that LEr(0) > EF (0), it is clear that the curve LEr(R/L) lies strictly above the curve

EF (R) in the range 0 ≤ R ≤ C. This directly follows from the fact that the feedback

exponent EF (R) decreases faster than LEr(R/L). Hence the condition LEr(0) ≥

EF (0) is sufficient to guarantee that LEr(R/L) ≥ EF (R) for all 0 ≤ R ≤ C.

The above lemma shows that for any BSC(ε), an upper bound on Lreq depends

only on the values of EF (R) and Er(R) at R = 0. From the results in [43], it can be

shown that

Er(0) = ln 2 − ln
(

1 + 2
√

ε(1 − ε)
)

and EF (0) = C − ln 2 − ln
(√

ε(1 − ε)
)

.

(4.30)

Using Lemma 16 and (4.30), we find that a deadline constraint of L = 4 is enough to

achieve the feedback exponent EF (R) at all rates below capacity for any BSC with

crossover probability 0.05 ≤ ε ≤ 0.5. However, the upper bound on Lreq, derived

using Lemma 16, becomes loose as ε → 0. To overcome this limitation, we use the

expurgated exponent Eex(R) [43] instead of the random coding exponent Er(R) at

low rates. Using numerical results, we find that the actual value of the minimum
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required deadline constraint is Lreq = 3 for all BSCs with ε ≤ 0.025, and Lreq = 4

otherwise.

4.3.2 The Very Noisy Channel

As noted in [43], a channel is very noisy when the probability of receiving a given

output is almost independent of the input, i.e., when the transition probabilities of

the channel are given by

pjk = ωj (1 + εjk) ,

where {ωj} denotes the output probability distribution, and {εjk} are such that

|εjk| � 1 for all j and k, and
∑

j ωjεjk = 0, ∀k. We plot the bounds on the er-

ror exponents given in (4.12) and (4.23), derived from the results in [21], in Figs. 4.3

and 4.4 for a VNC with capacity C = 1 for L = 2 and L = 4 respectively. From the

plots, it is clear that memoryless decoding is strictly sub-optimal to IR-ARQ for all

rates R ≥ 0.12 (with L = 2) and R ≥ 0.25 (with L = 4). Moreover, it is evident that

L = 4 is sufficient for IR-ARQ to achieve the feedback exponent EF (R) for all rates

below capacity. This observation motivates the following result.

Lemma 17. For the very noisy channel, a deadline constraint of L = 4 is enough for

the proposed incremental redundancy scheme to achieve the feedback exponent EF (R)

for all rates 0 ≤ R ≤ C.

Proof. For a VNC, the random coding exponent is given by [21]

Er(R) =

{ (
C
2
− R

)
, 0 ≤ R ≤ C

4

(
√

C −
√

R)2 , C
4
≤ R ≤ C

. (4.31)

Thus, under the deadline constraint L = 4, we have

4Er(R/4) = 4

(
C

2
− R

4

)

= 2C − R , 0 ≤ R ≤ C.

73



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Rate R (in bits/second)

 

 

Random coding exponent E
r
(R)

Lower bound on E
MD

(R,2)

Upper bound on E
MD

(R,2)

IR−ARQ scheme E
IR

(R,2)

Feedback Exponent E
F
(R)

Figure 4.3: Comparison of the error exponents for a Very Noisy Channel (VNC) with
capacity C = 1 and maximum number of ARQ rounds L = 2

74



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

Rate R (in bits/second)

 

 

Random coding exponent E
r
(R)

Lower bound on E
MD

(R,4)

Upper bound on E
MD

(R,4)

IR−ARQ scheme E
IR

(R,4)

Feedback Exponent E
F
(R)

Figure 4.4: Comparison of the error exponents for a Very Noisy Channel (VNC) with
capacity C = 1 and maximum number of ARQ rounds L = 4

75



Also

EF (R) = (C − R) + (
√

C −
√

R)2 ≤ (C − R) + (
√

C)2 = 4Er(R/4) .

Putting L = 4 in (4.23), the error exponent of IR-ARQ is given by

EIR(R, 4) ≥ min {EF (R) , 4Er(R/4)} = EF (R) . (4.32)

Thus, for a VNC, it is clear that a deadline constraint of L = 4 is enough for IR-ARQ

to achieve the feedback exponent EF (R) at all rates below capacity.

4.3.3 The Additive White Gaussian Noise Channel

The random coding and expurgated exponents for an AWGN channel with a Gaus-

sian input of power A and unit noise variance, are given in [43]. The sphere-packing

exponent of the AWGN channel is derived in [46–48]. The parameter Eo(s, ρ,p) in

the lower bound in (4.12) is replaced by Eo(s, ρ, t) which, following the steps in the

derivation of the random coding exponent in [43], is given by

Eo(s, ρ, t) = (1 + ρ)tA +

(
1

2

)

log(1 − 2tA) +
(ρ

2

)

log

(

1 − 2tA +
sA

ρ

)

+

(
1

2

)

log



1 +
sA
(

1 − s − s
ρ

)

1 − 2tA + sA
ρ



 .

The feedback exponent for the AWGN channel is then given by [21, 43]

EF (R) = max
0≤s≤ρ≤1

t≥0

(
Eo(s, ρ, t) − ρR

s

)

.

We plot the bounds on the error exponents, given in (4.12) and (4.23), in Figs. 4.5

and 4.6 for an AWGN channel with signal-to-noise ratio A = 3 dB for the deadline

constraints L = 2 and L = 4 respectively. The plots clearly indicate that memoryless
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decoding is strictly sub-optimal to IR-ARQ for all rates R ≥ 0.19 (with L = 2) and

R ≥ 0.46 (with L = 4). Moreover, when L = 4, the proposed IR-ARQ scheme

achieves the feedback exponent EF (R) for all rates below capacity. But we do not

have a rigorous proof that this observation holds universally for any general SNR.
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CHAPTER 5

CONCLUSIONS

The central goal of this work was to highlight the importance of feedback in wire-

less communications, and to identify many different ways in which feedback improves

the performance of wireless systems. Towards this end, we considered three different

scenarios and characterized the impact of feedback on each of them. We first consid-

ered cellular multicast channels and showed that the availability of feedback allows for

the cross-layer design of efficient multicast schedulers. We proposed low-complexity

multicast schedulers that achieve near-optimal scaling of both throughput and delay

with the user population, for both the perfect CSI feedback and the ARQ feedback

scenarios. We further proposed a cooperative multicast scheduler, requiring perfect

CSI feedback, that achieves the optimal asymptotic throughput-delay tradeoff. For

the multiple transmit antenna scenario, we showed that the throughput performance

of multicast schedulers is dominated by the amount of multicast gain they harness,

and demonstrated the near-optimality of the worst user scheduler with a large number

of transmit antennas.

We then considered fading eavesdropper channels and demonstrated the impor-

tance of feedback in establishing secure communications. We characterized the se-

crecy capacity under the assumptions of full CSI and main channel CSI knowledge
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at the transmitter, and proposed optimal rate and power allocation strategies. Quite

interestingly, we showed that the availability of feedback enables one to exploit the

time-varying nature of the wireless medium and achieve a perfectly secure non-zero

rate even when an eavesdropper channel is more capable than the legitimate channel

on the average. We further established the critical role of rate adaptation, based on

the main channel CSI, in facilitating secure communications over slow fading channels.

We also proposed a low-complexity on/off power allocation strategy and established

its asymptotic optimality. This optimality shows that the presence of eavesdropper

CSI at the transmitter does not offer additional gains in the secrecy capacity for

slow fading channels, at high enough SNR levels. We then considered an ARQ feed-

back scenario and proposed transmission schemes that leverage the ARQ feedback

to achieve non-zero perfect secrecy rates when the eavesdropper has a superior chan-

nel on the average. Thereby, we established the positive impact of feedback on the

secrecy capacity of fading channels.

Finally, we considered ARQ channels with strict delay deadline constraints to

study the impact of ARQ feedback on reliability. We proposed a transmission scheme

based on incremental redundancy ARQ with joint decoding at the receiver, and

showed that it outperforms Forney’s memoryless decoding scheme in terms of the

achievable error exponents. Moreover, the proposed IR-ARQ scheme was shown to

achieve the Forney’s feedback exponent EF (R) when the delay constraint satisfies

L ≥ 4 for any BSC and VNC channel, and also for at least some range of SNRs

for AWGN channels. This translates into a significant improvement in reliability

since Forney’s memoryless decoding scheme typically achieves the feedback exponent

EF (R) only as L → ∞.
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5.1 Possible Future Work

Some of the promising directions for future research are listed below.

• In Chapter 2, we characterized the throughput-delay tradeoff achieved by the

proposed set of schedulers. However, characterizing the optimal throughput-

delay tradeoff in cellular multicast channels is still an open problem. Some

related work for wireless point-to-point and broadcast channels can be found

in [27, 28, 49].

• It will be interesting to extend the multicast schemes proposed in Chapter 2

to the general multi-group multicast scenario, where only the users within a

particular group want the same information from the base station. One can

harness throughput gains in such a scenario by exploiting the multi-user diver-

sity available across the groups. But this comes at the price of an increased

feedback requirement and a higher average delay. Some preliminary results for

this scenario can be found in [50].

• We assumed backlogged queues in the throughput-delay analysis of Chapter 2

and hence ignored queuing delay in our delay definition. An interesting open

problem would be to analyze the throughput-delay tradeoff achieved under a

queuing model with random arrivals. In such cases, it would be advantageous to

incorporate the instantaneous queue lengths (states) into the scheduler design

problem [27,28]. Also characterizing the queuing delay for coupled queues (like

in the best user scheduler) is a challenging open problem.
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• Extending the throughput-delay analysis in Chapter 2 to the asymmetric fad-

ing scenario is an open problem. The asymmetric setting will lead to fairness

issues between the different users, which need to be taken into account during

the scheduler design. Some notions of fairness and the corresponding optimal

schedulers for broadcast channels are developed in [3, 51].

• In Chapter 3, we characterized a set of achievable perfect secrecy rates for the

system with ARQ feedback. Characterizing the secrecy capacity with ARQ

feedback is still an open problem.

• Another interesting venue for research is information-theoretic secrecy for delay-

limited channels. Here the challenge is to come up with the correct outage

formulation that is meaningful. Some preliminary efforts in this area are given

in [41, 42], but these seem to be meaningful only for the full transmitter CSI

scenario.

• Characterizing the secrecy capacity for a fast fading scenario (where a codeword

sees almost infinite channel realizations) is still an open problem. The perfect

secrecy rate achieved by the constant-rate power control scheme proposed in

Chapter 3 is a lower bound on the secrecy capacity. It would be interesting to

study if this scheme is in fact optimal.

• It would be interesting to investigate whether ARQ feedback from the receiver

would improve the secrecy capacity of AWGN eavesdropper channels.

• Burnashev characterized the exact error exponent for DMCs with perfect output

feedback in [20]. However, for DMCs with ARQ feedback (one-bit feedback),
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only the achievability of the Forney exponent EF (R) has been proved. Hence

only a lower bound on the actual error exponent is known. Thus characterizing

the maximum achievable error exponent for DMCs with ARQ feedback still

remains an open problem.

• We showed in Chapter 4 that a delay deadline of L = 4 is enough for the

proposed IR-ARQ scheme to achieve the Forney exponent EF (R) for any BSC

or VNC. Moreover, we showed numerically that this result also holds for AWGN

channels at least for the considered range of SNRs. It will be interesting to

analytically investigate whether this result holds for any general SNR in AWGN

channels.
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APPENDIX A

THROUGHPUT-DELAY ANALYSIS FOR CELLULAR
MULTICAST

A.1 Worst User Scheduler (Theorem 3)

The average throughput of the worst user scheduler is given by

Rtot = NE
[
log
(
1 + |hπ(1)|2P

)]
.

Since the {|hi|2} are i.i.d. and exponentially distributed with unit mean, it is evident

that the random variable |hπ(1)|2 = mini |hi|2 also follows an exponential distribution,

and hence

Rtot = N

∫ ∞

0

log(1 + xP )Ne−Nxdx = − Ne(
N
P )Ei

(

−N

P

)

, (A.1)

where Ei(x) =
∫ x

−∞
(et/t)dt. For large values of x, we have

Ei(−x) =

∫ −x

−∞

et

t
dt = − e−x

x
(1 + ε) ,

where ε → 0 as x → ∞. Using this fact in (A.1), we get

Rtot = P (1 + ε) = Θ(1).
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We now calculate the average delay of the worst user scheduler. The BS maintains

a single common queue for all the users in the system. We consider each coherence

interval of length Tc as a time slot. The service time X is defined as

X = kTc, when Tc

(
k−1∑

i=1

Ri

)

< S ≤ Tc

(
k∑

i=1

Ri

)

(k ∈ {1, 2, . . .}). (A.2)

Here S denotes the size of each packet and Ri represents the service rate in the ith

time slot, which is given by Ri = log(1 + |hi
π(1)|2P ). We let C = (S/Tc) in the sequel.

We consider the sequence of random variables {Ri} and define a stopping instant τ

as follows:

τ = min

{

k :
k∑

i=1

Ri ≥ C

}

.

Using the stopping rule property [52], we get E[τ ]E[R] = E[Ĉ] = E[C + C̃], where C̃

represents the overshoot of the sum of Ri’s with respect to the threshold C (Hence

E[C̃] ≤ E[R]). Thus the mean stopping time is given by

C

E[R]
≤ E[τ ] ≤ 1 +

C

E[R]
⇒ E[τ ] = Θ

(

1 +
C

E[R]

)

.

Thus the average service time is given by

X̄ = E[τ ]Tc = Θ

(

Tc +
S

E[R]

)

. (A.3)

Since for large values of N , the average service rate E[R] = (Rtot/N) = Θ(1/N), the

average delay of the worst user scheduler scales as

D = X̄ = Θ(Tc + NS) = Θ(N).

A.2 Best User Scheduler (Theorem 4)

The average throughput of the best user scheduler is given by

Rtot = E
[
log
(
1 + |hπ(N)|2P

)]
=

∫ ∞

0

log(1 + xP )dF (x),
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where |hπ(N)|2 = maxi |hi|2 has the distribution F (x) = (1 − e−x)
N

, x ≥ 0. Integrat-

ing by parts and simplifying, we get

Rtot =

N∑

i=1

(
N

i

)

(−1)ie(
i
P )Ei

(−i

P

)

. (A.4)

It has been shown in [53] that the average throughput in (A.4) scales as

Rtot = Θ(log log N) (A.5)

with the number of users N .

For calculating the average delay of the best user scheduler, we follow the approach

used in [53]. Here the BS maintains N queues, one for each user in the system. These

queues are coupled, in the sense that any packet that needs to be transmitted enters

all the N queues (since it needs to be transmitted to all the users). Moreover, the BS

serves only one of these N queues during any particular time slot. We first calculate

the average service time X̄ required for transmitting a packet from a queue when the

BS always serves that particular queue. The average service rate of the best user

scheduler is given by E[R] = Rtot. Thus following the argument in the earlier proof

and using (A.5), it can be shown that (refer (A.3))

X̄ = Θ

(

Tc +
S

E[R]

)

= Θ

(

Tc +
S

log log N

)

= Θ(1). (A.6)

We are interested in determining the delay involved in successfully transmitting a

particular packet from all of the N coupled queues. The actual delay, as defined in

Section 2.1, is the time between the start of transmission of a packet and the instant

when the packet reaches all the N users in the system. In our analysis, we assume

that the packet of interest is at the head of all the N queues during the start of

transmission. This assumption thus results in a lower bound on the actual delay.
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We characterize the delay based on the observation that our queuing problem

is equivalent to the well-known “coupon collector” problem. A similar observation

was made earlier in [4] where the authors characterized the delay of the throughput-

optimal broadcast scheme. They assumed that the server (BS) offers a constant rate

of service, which is independent of the instantaneous channel gains of the users. In our

analysis, however, we incorporate the effects of rate adaptation. Let X1, X2, · · · , XN

denote the service times (assuming continuous service) required for transmitting a

packet from each of the N queues. Then the delay of the scheduler is directly pro-

portional to the minimum number of trials required to ensure that the first queue is

served at least (X1/Tc) times by the base station, the second queue is served at least

(X2/Tc) times and so on ...

We lower bound the average delay by calculating the minimum number of trials

Nt required to ensure that all the N queues are served at least (Xmin/Tc) times by

the BS, where Xmin = min{X1, X2, · · · , XN}. We determine the average number

of such required trials E[Nt|Xmin] using the results derived in [4]. Since the BS

serves only one of the N queues at any time and since the fading is symmetric across

users, there is an equal probability that the BS serves any one of the queues. Thus

the probabilities {pj} of the server choosing the jth queue for service are given by

p1 = · · · = pN = (1/N). These probabilities {pj} remain constant through all time

slots and are not functions of the instantaneous service rates {Ri} provided by the

BS. The Moment Generating Function (MGF) of the number of trials required is

given by [4]

FNt|Xmin
(z) =

∞∑

i=0

ziPr(Nt > i) =
∞∑

i=0

zibi,
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where bi is the probability of failure of sending a packet to all the users in i channel

uses. The value of bi is equal to the polynomial (x1 + x2 + · · · + xN)i/N i evaluated

at x1 = · · · = xN = 1 after removing all terms that have all xi’s with exponent larger

than or equal to (Xmin/Tc) (denoted by the operator {.}) [38]. Thus the MGF of the

number of trials required is given by

FNt|Xmin
(z) =

∞∑

i=0

zi

N i

{

(x1 + · · · + xN)i
}

.

Using the identities [38]

zi

N i
=

N

i!z

∫ ∞

0

e
−Nt

z tidt and

∞∑

i=0

{(x1 + · · ·+ xN )i}
i!

=
{
e(x1+···+xN )

}
= e(x1+···+xN ) −

N∏

i=1

(

exi − S(Xmin
Tc

)(xi)
)

,

where Sm(t) =
∑m−1

i=0 (ti/i!), we get

FNt|Xmin
(z) =

N

z

∫ ∞

0

e−
Nt
z

(

eNt

[

1 −
(

1 − S(Xmin
Tc

)(t)e
−t
)N
])

dt.

Hence the average number of trials required E[Nt|Xmin] is given by [4]

E[Nt|Xmin] = FNt|Xmin
(1) = N

∫ ∞

0

[

1 −
(

1 − S(Xmin
Tc

)(t)e
−t
)N
]

dt

= NE

[

max
1≤i≤N

Yi

]

,

where the Yi’s are i.i.d random variables that follow a Chi-square distribution with

(2Xmin/Tc) degrees of freedom. Using the results in [4], it can be shown that for such

a sequence of random variables {Yi},

E

[

max
1≤i≤N

Yi

]

= max

{

Θ(log N), Θ

(
Xmin

Tc

)}

. (A.7)

Thus the average number of trials required is given by

E[Nt|Xmin] = max

{

Θ (N log N) , Θ

(
NXmin

Tc

)}

.

89



Hence the average delay of the best user scheduler can be lower bounded by

D ≥ EXmin
[E[Nt|Xmin]Tc] = EXmin

[max {Θ (NTc log N) , Θ (NXmin)}] .

Since E [max{Z1, Z2}] ≥ max {E[Z1], E[Z2]}, we have

D = max {Ω (NTc log N) , Ω (NE[Xmin])} .

By observing that E[Xmin] ≤ X̄ and using (A.6), we get

D = Ω (NTc log N) = Ω (N log N) . (A.8)

A.3 Median User Scheduler (Theorem 5)

In the median user scheduler, the BS keeps on repeating the same packet to

(N/2) users in each time slot, until all the N users receive it successfully. Due to this

repetition, some of the users receive redundant information (multiple copies of the

same packet). Hence the average throughput of this scheduler cannot be specified

as

Rtot =

(
N

2

)

E

[

log
(

1 + |hπ( N
2

+1)|2P
)]

,

where |hπ( N
2

+1)|2 is the median of the channel gains among all the N users in the

system. However, the average throughput can be easily calculated using the follow-

ing renewal theory argument. Consider the renewal process wherein the successful

reception of a packet of size S by all the N users is taken to be the renewal event.

Since the average inter-renewal time is given by the average delay D, it is straight-

forward to show, using the renewal reward theorem, that the average throughput of

the scheduler is

Rtot =
NS

D
.
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Thus we first need to characterize the average delay D of the median user scheduler.

The average service rate provided to any user is given by

E[R] = E

[

log
(

1 + |hπ( N
2

+1)|2P
)]

.

We first characterize the scaling of E[R] with N . Now suppose that the BS does not

repeat the same packet after one transmission. Then the average throughput obtained

is T = (N/2)E[R]. From the results on central order statistics in [54] (Theorem 8.5.1),

we know that the sample median of N i.i.d. exponential random variables converges

in distribution to a normal random variable with mean θ and variance (1/N), where

θ = log 2 is the median of the underlying exponential distribution. Hence

(

|hπ( N
2

+1)|2 − θ
)√

N → W in distribution, (A.9)

where W is a standard normal random variable. Using Chebyshev’s inequality, we

get ∀ε > 0,

Pr
(∣
∣
∣|hπ( N

2
+1)|2 − θ

∣
∣
∣ > ε

)

= Pr
(√

N
∣
∣
∣|hπ( N

2
+1)|2 − θ

∣
∣
∣ > ε

√
N
)

<
E [W 2] + δ

Nε2
→ 0 as N → ∞.

Thus |hπ( N
2

+1)|2 → θ in probability. Since the log(.) function is continuous,

log
(

1 + |hπ( N
2

+1)|2P
)

→ log(1 + θP ) in probability. (A.10)

We now derive a lower bound on T . We recall the following property of positive

random variables. Let (Xn) be a set of positive random variables converging to a

constant A in probability. Then ∀ε > 0, Pr (|Xn − A| ≥ ε) < δ, for some small δ > 0.

Now

E[Xn] =

∫ ∞

0

tfXn
(t)dt ≥

∫ A+ε

A−ε

tfXn
(t)dt ≥ (A − ε)(1 − δ).
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Taking the limit as n → ∞, we get limn→∞ E[Xn] ≥ A. Using this property in

(A.10), we get

lim
N→∞

E

[

log
(

1 + |hπ( N
2

+1)|2P
)]

≥ log(1 + θP ) = Θ(1) ⇒ T = Ω(N). (A.11)

Combining this with the upper bound on T in (2.4), we get

T = Θ(N) ⇒ E[R] = E

[

log
(

1 + |hπ( N
2

+1)|2P
)]

= Θ(1). (A.12)

Thus the average service rate in the median user scheduler does not scale with N .

We now consider an extension of the coupon collector problem, where the users are

assumed to have coupons and the transmitter is the collector that selects (N/2)

different users randomly (with a uniform distribution) in each trial, and collects one

coupon from each of them. We characterize the average number of trials Nt required

to ensure that the collector collects at least one coupon from all the N users. An

upper bound can be easily derived by considering a weaker modified scheme, where in

each trial, the (N/2) users are chosen with replacement by the collector from the set

of N users. Thus any user can be selected multiple times within the same trial, and

hence the average number of trials required for this weaker scheme will be greater

than that for the original scheme. It is easy to see that this weaker scheme is in fact

the original coupon collector problem [38] with (N/2) independent coupons collected

at each instant. Thus

Nt = O

(
N log N

(N/2)

)

= O(log N).

A lower bound on Nt is derived as follows. During the kth trial, the probability

that coupon i has not been collected is (1/2)k. The expected number of coupons that

have not been collected until the kth trial is given by EN,k = N(1/2)k [52]. We find
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the number of trials kδ required to ensure that Pr(collecting coupons from all N users

within kδ trials) > 1 − δ, for some small δ > 0. This requires that EN,k < ε for some

small ε > 0.

⇒ N

2kδ
< ε ⇒ kδ > log2

(
N

ε

)

⇒ kδ = Ω(log N).

Since ensuring that coupons have been collected from all users is stronger than the

condition Pr(collecting coupons from all N users within kδ trials) > 1−δ, the value kδ

serves as a lower bound for Nt. Thus Nt = Θ(log N). Using (A.12) and the property

(A.9), it can be shown that the average delay D of the median user scheduler scales

as

D = Θ

(

Nt

(

Tc +
S

E[R]

))

= Θ(log N).

The average throughput of the median user scheduler is hence given by

Rtot =
NS

D
= Θ

(
N

log N

)

.

A.4 Incremental Redundancy Multicast (Theorem 6)

Let Ai denote the event that a packet is successfully decoded by all the N users

in the system in i transmission attempts. Following the notation in [22], we define

q(m) = Pr(A1, . . . , Am−1, Am) = p(m − 1) − p(m),

where

p(m) = Pr(A1, . . . , Am−1, Am) = 1 −
m∑

l=1

q(l),

with p(0) = 1. The rate R̄ is defined as R̄ = (b/L). We define the random variable

τ to be the number of transmission attempts made between the instant when the

codeword is generated and the instant when its transmission is stopped (Transmission
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is stopped either when the packet is successfully decoded by all the N users or the

number of transmission attempts exceeds the rate constraint M). The probability

distribution of τ is given by

fτ (m) =







0, m = 0
q(m), 1 ≤ m ≤ M − 1
q(M) + p(M), m = M

.

We define the random reward R as follows: R = NR̄ if transmission stops because

of successful decoding and R = 0 if transmission stops because of the rate constraint

violation. Hence

E[R] = NR̄

M∑

m=1

q(m) = NR̄[1 − p(M)].

The mean inter-renewal time is given by

E[τ ] =
M∑

m=1

mfτ (m) =
M∑

m=1

mq(m) + Mp(M)

=

M∑

m=1

m[p(m − 1) − p(m)] + Mp(M) =

M−1∑

m=0

p(m).

Applying the renewal-reward theorem, we obtain the average throughput of the pro-

posed scheme as Rtot = (E[R]/E[τ ]) with probability 1. Hence

Rtot =
NR̄ [1 − p(M)]

1 +
∑M−1

m=1 p(m)
.

The average delay D of the scheme is given by the mean inter-renewal time. Hence

D = E[τ ]. The unconstrained throughput and delay are obtained by letting M → ∞

and are given by

Rtot =
NR̄

∑∞
m=0 p(m)

and D =
∞∑

m=0

p(m). (A.13)
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From the earlier definitions, we have

p(m) = Pr(A1, . . . , Am−1, Am) = Pr(Am) = Pr

(

N

min
i=1

m∑

k=1

I(X; Yik) ≤ R̄

)

= 1 −
[

1 − Pr

(
m∑

k=1

I(X; Y1k) ≤ R̄

)]N

. (A.14)

Now for a Gaussian input distribution, we have

m∑

k=1

I(X; Y1k) =
m∑

k=1

log(1 + |hk|2).

We know that

log

(

1 +

m∑

k=1

|hk|2
)

≤
m∑

k=1

log(1 + |hk|2) ≤
m∑

k=1

|hk|2.

Hence

Pr

(
m∑

k=1

|hk|2 ≤ (eR̄ − 1)

)

≥ Pr

(
m∑

k=1

log(1 + |hk|2) ≤ R̄

)

≥ Pr

(
m∑

k=1

|hk|2 ≤ R̄

)

.

Since both R̄ and (eR̄ − 1) are constants, substituting both the lower and upper

bounds in (A.14) will yield the same scaling with N . So we consider only the lower

bound on p(m). Let

s(m) = 1 −
[

1 − Pr

(
m∑

k=1

|hk|2 ≤ R̄

)]N

.

Hence
∑∞

m=0 p(m) = Θ (
∑∞

m=0 s(m)) w.r.t N . The random variable
∑m

k=1 |hk|2 has a

2m-dimensional Chi-square distribution with the density and distribution functions

given by

f(x) =
e−xxm−1

(m − 1)!
and F (x) = 1 − e−x

(
m−1∑

l=0

xl

l!

)

, x ≥ 0.

Hence

s(m) = 1 −
[

e−R̄

(
m−1∑

l=0

R̄l

l!

)]N

.
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From Taylor’s theorem, we know that (for some 0 < θ < 1)

eR̄ =
m−1∑

l=0

R̄l

l!
+

eθR̄R̄m

m!
⇒

m−1∑

l=0

R̄l

l!
= eR̄ − eθR̄R̄m

m!

⇒ s(m) = 1 −
(

1 − e−(1−θ)R̄R̄m

m!

)N

.

To find the scaling of
∑∞

m=0 s(m) w.r.t N , we first derive a lower bound by finding

the value of m until which s(m) → 1 as N → ∞. Now

s(m) → 1 ⇒
(

1 − e−(1−θ)R̄R̄m

m!

)N

→ 0 ⇒ e−(1−θ)R̄R̄m

m!
> Θ

(
1

N

)

.

Using Stirling’s approximation, we have

e−(1−θ)R̄R̄m

√
2πme−mmm

>
k

N
, ∀ constant k.

Taking log on both sides, we get

(1 − θ)R̄ − m + m log
(m

R̄

)

+
1

2
log(2πm) < log N − log k, ∀k.

For large N , this equation can be reduced to m log m < log N . This equation is

satisfied by all values of m such that

m < Θ

(
log N

log log N

)

.

Since s(m) → 1 as N → ∞ for all values of m that satisfy the above equation, the

sum of s(m)’s can be lower bounded as

∞∑

m=0

s(m) ≥ Θ

(
log N

log log N

)

. (A.15)

Similarly an upper bound on
∑∞

m=0 s(m) can be derived by finding the value of m

from which s(m) → 0 as N → ∞. Following the same procedure as before, we find

that s(m) → 0 when m > Θ(log N/ log log N). This yields the following upper bound

∞∑

m=0

s(m) ≤ Θ

(
log N

log log N

)

.
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Combining this with the lower bound in (A.15), we get

∞∑

m=0

s(m) = Θ

(
log N

log log N

)

.

Thus the average delay is given by

D =

∞∑

m=0

p(m) = Θ

(
∞∑

m=0

s(m)

)

= Θ

(
log N

log log N

)

.

The average throughput of the incremental redundancy scheme is then given by

Rtot =
NR̄

∑∞
m=0 p(m)

=
NR̄

D
= Θ

(
N log log N

log N

)

.

A.5 Cooperative Multicast (Theorem 7)

The average throughput in the first stage of the cooperation scheme is given by

(
N

2

)

E[Rs1] =

(
N

2

)

E

[

log
(

1 + |hπ( N
2

+1)|2P
)]

.

It is shown in (A.12) that E[Rs1] = Θ(1). We now characterize the average throughput

in the second stage of the cooperation scheme. As noted earlier, the cooperative

transmission by the users in the second stage is equivalent to the transmission of

packets from a transmitter equipped with (N/2) transmit antennas to the worst ser

in a group of (N/2) users. Hence the average transmission rate during the cooperative

stage is given by

E[Rs2] = E

[

min
i=1,...,(N/2)

log

(

1 +
|h1i|2 + · · ·+ |h(N/2)i|2

(N/2)
P

)]

,

where the |hki|2’s are i.i.d and exponentially distributed and represent the inter-user

fading coefficients.

⇒ E[Rs2] = E

[

log

(

1 + min
i=1,...,M

|χi
2M |2
M

P

)]

, (A.16)
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where M = (N/2) and |χi
2M |2’s are Chi-square random variables with 2M degrees

of freedom whose distribution function is given by F (x) = 1 − e−x
(
∑M−1

j=0 (xj/j!)
)

,

x ≥ 0. Using the results on extreme order statistics in [54] (Theorems 8.3.2-8.3.6), it

can be shown that the random variable
(
minM

i=1 |χi
2M |2

)
/bM → W in distribution as

M → ∞, where W is a Weibull type random variable and bM satisfies F (bM) = (1/M).

Now

F (bM) =
1

M
⇒ 1 − e−bM

(
M−1∑

j=0

bj
M

j!

)

=
1

M
.

Using Taylor’s theorem, we get for some 0 < βM < 1

1 − e−bM

(

ebM − eβM bM bM
M

M !

)

=
1

M
⇒ e−(1−βM )bM bM

M

M !
=

1

M
.

Using Stirling’s approximation, we have

e−(1−βM )bM bM
M√

2πMMMe−M
=

1

M
.

Taking log(.) on both sides, we get

(1 − βM)bM − M log bM = M −
(

M − 1

2

)

log M + C.

Since βM → 0 as M → ∞, we get bM = Θ(M). Thus
(
minM

i=1 |χi
2M |2

)
/M → kW

in distribution, for some constant k > 0. Since the log(.) function is continuous, we

have

log

(

1 +
minM

i=1 |χi
2M |2

M
P

)

→ log(1 + kWP ) in distribution, as M → ∞.

Now, we know

log

(

1 +
minM

i=1 |χi
2M |2

M
P

)

≤
(
minM

i=1 |χi
2M |2

)
P

M
≤ |χ1

2M |2P
M

.

Since

E

[( |χ1
2M |2P
M

)2
]

=
E[(|χ1

2M |2)2]P 2

M2
=

(

1 +
1

M

)

P 2 ≤ 2P 2 < ∞ ∀M,
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the sequence {(|χ1
2M |2P )/M ; M ≥ 1} is uniformly integrable.

⇒
{

log

(

1 +
minM

i=1 |χi
2M |2

M
P

)

; M ≥ 1

}

is uniformly integrable.

It is shown in [55] that if a sequence of random variables (Xn) is uniformly integrable

and Xn → X in distribution as n → ∞, then EXn → EX as n → ∞. Thus

E

[

log

(

1 +
minM

i=1 |χi
2M |2

M
P

)]

→ E[log(1 + kWP )] = Θ(1).

Hence the average transmission rate of the second stage is given by E[Rs2] = Θ(1)

w.r.t N . Since both E[Rs1] and E[Rs2] do not scale with N and since the minimum

is taken over only two positive quantities, we have E [min{Rs1, Rs2}] = Θ(1). Thus

the average throughput of the cooperation scheme is given by

Rtot =

(
N

2

)

E [min{Rs1, Rs2} ] = Θ(N).

We now determine the average delay of the cooperation scheme. We note that the

BS needs to maintain only a single queue that caters to all the N users in the system.

The information transmitted by the BS in the first half of each time slot reaches

all the N users at the end of that time slot. Hence the average delay is equal to

the average service time required for transmitting a packet of size S from the queue.

Following the steps in Appendix A.1, the average delay D for transmitting a packet

in the cooperation scheme is given by (refer equation (A.3))

D = Θ

(

Tc +
S

E[min{Rs1, Rs2}]

)

= Θ(1).

A.6 Multi-Transmit Antenna Worst User Scheduler (Theo-

rem 8)

From the results on extreme order statistics in [54], we know that (|χmin|2/bN ) →

W in distribution, where W has a Weibull type distribution and bN satisfies F (bN ) =
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(1/N), which implies

1 − e−LbN

(
L−1∑

k=0

(LbN )k

k!

)

=
1

N
.

Using Taylor’s theorem, we get for some 0 < γN < 1

1 − e−LbN

(

eLbN − eγN LbN (LbN )L

L!

)

=
1

N
⇒ e−(1−γN )LbN (LbN )L

L!
=

1

N
.

Taking log(.) on both sides, we get

(1 − γN)LbN − L log bN = log N + L log L − log(L!).

Since |χmin|2 ≤ |χ1|2 = Θ(1), we know that bN = O(1) and hence the log bN term

dominates the left hand side of the above expression. Thus we have bN = Θ
(

N−( 1
L)
)

.

⇒ N( 1
L)|χmin|2 → kW in distribution, for some constant k > 0.

Since E [|χmin|2] ≤ E [|χ1|2] < ∞, we can use the result in Theorem 2.1 of [56] to

conclude that N( 1
L)

E [|χmin|2] → kE[W ] = Θ(1). Thus E [|χmin|2] = Θ
(

N−( 1
L)
)

.

The average throughput of the worst user scheme can now be upper bounded using

Jensen’s inequality as follows

Rtot = NE
[
log
(
1 + |χmin|2P

)]
≤ N log

(
1 + E

[
|χmin|2

]
P
)

⇒ Rtot = O
(

N(L−1
L )
)

. (A.17)

We lower bound the average throughput of the worst user scheme as follows

Rtot = N

∫ ∞

0

log(1 + xP )dFmin(x) ≥ N

∫ ∞

bN

log(1 + xP )dFmin(x).

⇒ Rtot ≥ N log (1 + bNP ) [1 − Fmin(bN )] ,

where Fmin(x) = 1 − (1 − F (x))N . Using the fact that F (bN ) = (1/N), we get

Fmin(bN ) = 1 −
(

1 − 1

N

)N

= 1 − eN log(1− 1
N ) = 1 − e−1

(

1 + O

(
1

N

))

.

100



⇒ Rtot ≥ N log (1 + bNP )

[

e−1 + O

(
1

N

)]

= Θ
(

N log
(

1 + N− 1
L P
))

= Θ
(

N(L−1
L )
)

.

Combining this with the upper bound in (A.17), we get Rtot = Θ
(

N(L−1
L )
)

.

A.7 Multi-Transmit Antenna Best User Scheduler (Theo-
rem 9)

From the results on extreme order statistics in [54], we know that

( |χmax|2 − aN

bN

)

→ W in distribution,

where W has a Gumbel distribution and aN and bN satisfy F (aN) = 1 − (1/N) and

bN = (1/Nf(aN)), where f(.) denotes the probability density function obtained from

(2.8). Now

F (aN) = 1 − 1

N
⇒ e−LaN (LaN )(L−1)

(L − 1)!

(

1 + O

(
1

aN

))

=
1

N
.

Taking log(.) on both sides and simplifying, we get

LaN − (L − 1) log aN = log N + (L − 1) − 1

2
log(L − 1) + K.

⇒ aN =
log N + (L − 1) log log N

L
+ O(log log N).

Since

f(aN) =
Le−LaN (LaN )(L−1)

(L − 1)!
= Θ

(
1

N

)

,

we have bN = C = Θ(1). Thus

|χmax|2 −
(

log N + (L − 1) log log N

L
+ O(log log N)

)

→ CW in distribution.
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Using Chebyshev’s inequality, it is easy to show that

|χmax|2
(

log N+(L−1) log log N
L

) → 1 in probability.

Since any Chi-squared random variable with 2L degrees of freedom can be expressed

as the sum of L exponential i.i.d random variables, we have

E
[
|χmax|2

]
= E

[
N

max
i=1

{
Zi

1 + · · · + Z i
L

L

}]

≤ E

[
N

max
i=1

Zi
1

]

,

where Z i
j’s are exponential random variables with unit mean. Hence

E




|χmax|2

(
log N+(L−1) log log N

L

)



 ≤ E
[
maxN

i=1 Zi
1

]

(
log N+(L−1) log log N

L

) ≤ k log N
(

log N+(L−1) log log N
L

) ≤ kL < ∞.

Thus we can apply the Dominated Convergence Theorem to get

E




|χmax|2

(
log N+(L−1) log log N

L

)



→ 1 ⇒ E
[
|χmax|2

]
= Θ

(
log N + (L − 1) log log N

L

)

.

Using Jensen’s inequality, we get

Rtot = E
[
log
(
1 + |χmax|2P

)]
≤ log

(
1 + E

[
|χmax|2

]
P
)
.

⇒ Rtot = O

(

log

(

1 +
log N + (L − 1) log log N

L

))

. (A.18)

The average throughput of the best user scheme can be lower bounded as follows

Rtot =

∫ ∞

0

log(1 + xP )dFmax(x) ≥
∫ ∞

aN

log(1 + xP )dFmax(x).

⇒ Rtot ≥ log (1 + aNP ) [1 − Fmax(aN )] ,

where Fmax(x) = (F (x))N . Using the fact that F (aN) = 1 − 1
N

, we get

Fmax(aN) = (F (aN))N =

(

1 − 1

N

)N

= e−1

(

1 + O

(
1

N

))

.
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⇒ Rtot ≥ log (1 + aNP )

[

1 − e−1 + O

(
1

N

)]

= Θ (log (1 + aNP )) .

⇒ Rtot = Ω

(

log

(

1 +
log N + (L − 1) log log N

L

))

.

Combining this with the upper bound in (A.18), we get

Rtot = Θ

(

log

(

1 +
log N + (L − 1) log log N

L

))

.
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APPENDIX B

PERFECT SECRECY RATES FOR FADING
EAVESDROPPER CHANNELS

B.1 Full CSI at the Transmitter (Theorem 10)

We first prove the achievability of (3.4) by showing that for any perfect secrecy

rate Rs < C
(F )
s , there exists a sequence of (2nRs , n) block codes with average power

P̄ , equivocation rate Re > Rs − ε, and probability of error P n
e → 0 as n → ∞. Let

Rs = C
(F )
s −3δ for some δ > 0. We quantize the main channel gains hM ∈ [0, M1] into

uniform bins {hM,i}q1

i=1, and the eavesdropper channel gains hE ∈ [0, M2] into uniform

bins {hE,j}q2

j=1. The channels are said to be in state sij (i ∈ [1, q1], j ∈ [1, q2]), if

hM,i ≤ hM < hM,(i+1) and hE,j ≤ hE < hE,(j+1), where hM,(q1+1) = M1, hE,(q2+1) = M2.

We also define a power control policy for any state sij by

P (hM,i, hE,j) = inf
hM,i≤hM<hM,(i+1),hE,j≤hE<hE,(j+1)

P (hM , hE) , (B.1)

where P (hM , hE) is the optimal power allocation policy in (3.7) that satisfies P (hM , hE) =

0 for all hM ≤ hE, and the power constraint

∫ ∞

0

∫ ∞

hE

P (hM , hE)f(hM)f(hE)dhMdhE ≤ P̄ . (B.2)
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Consider a time-invariant AWGN channel with channel gains hM ∈ [hM,i, hM,(i+1))

and hE ∈ [hE,j, hE,(j+1)). It is shown in [13, 57] that for this channel, we can develop

a sequence of (2nij(Rs)ij , nij) codes with codeword rate log (1 + hM,iP (hM,i, hE,j)) and

perfect secrecy rate

(Rs)ij =
[

log (1 + hM,iP (hM,i, hE,j)) − log
(
1 + hE,(j+1)P (hM,i, hE,j)

) ]+

, (B.3)

such that the average power is P (hM,i, hE,j) and with error probability P ij
e → 0 as

nij → ∞, where

nij = n Pr
(
hM,i ≤ hM < hM,(i+1), hE,j ≤ hE < hE,(j+1)

)

for sufficiently large n. Note that the expression in (B.3) is obtained by considering

the worst case scenario hM = hM,i, hE = hE,(j+1) that yields the smallest perfect

secrecy rate.

For transmitting the message index w ∈ {1, · · · , 2nRs}, we first map w to the

indices {wij} by dividing the nRs bits which determine the message index into sets of

nij(Rs)ij bits. The transmitter uses a multiplexing strategy and transmits codewords

{xwij
} at codeword rate log (1 + hM,iP (hM,i, hE,j)) and perfect secrecy rate (Rs)ij,

when the channel is in state sij. As n → ∞, this scheme achieves the perfect secrecy

rate (using the ergodicity of the channel),

Rs =

q1∑

i=1

q2∑

j=1

[

log

(
1 + hM,iP (hM,i, hE,j)

1 + hE,(j+1)P (hM,i, hE,j)

)]+

Pr

(
hM,i ≤ hM < hM,(i+1),
hE,j ≤ hE < hE,(j+1)

)

.

Thus for a fixed δ, we can find a sufficiently large n such that

Rs ≥
q1∑

i=1

q2∑

j=1

[

log

(
1 + hM,iP (hM,i, hE,j)

1 + hE,(j+1)P (hM,i, hE,j)

)]+

Pr

(
hM,i ≤ hM < hM,(i+1),
hE,j ≤ hE < hE,(j+1)

)

− δ.

(B.4)
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For asymptotically large n, using the ergodicity of the channel, the average power of

the multiplexing scheme satisfies

q1∑

i=1

q2∑

j=1

P (hM,i, hE,j)

∫ hM,(i+1)

hM,i

∫ hE,(j+1)

hE,j

f(hM)f(hE)dhMdhE

(a)

≤
∫ ∞

0

∫ ∞

0

P (hM , hE)f(hM)f(hE)dhMdhE

(b)

≤ P̄ ,

where (a) follows from the definition of P (hM,i, hE,j) in (B.1) and (b) follows from

(B.2). Moreover, the error probability of the multiplexing scheme is upper bounded

by

P n
e ≤

q1∑

i=1

q2∑

j=1

P ij
e → 0, as n → ∞.

Now since

C(F )
s =

∫ ∞

0

∫ ∞

0

[

log

(
1 + hMP (hM , hE)

1 + hEP (hM , hE)

)]+

f(hM)f(hE)dhMdhE

≤
∫ ∞

0

∫ ∞

hE

log

(
hM

hE

)

f(hM)f(hE)dhMdhE < ∞,

(because E{hM} < ∞,
∣
∣
∣

∫ 1

0
log x dx

∣
∣
∣ = 1 < ∞ and f(hM), f(hE) are continuous and

bounded), there exist M1 and M2 for a fixed δ such that

∫ M1

0

∫ ∞

M2

[

log

(
1 + hMP (hM , hE)

1 + hEP (hM , hE)

)]+

f(hM)f(hE)dhMdhE <
δ

3
,

∫ ∞

M1

∫ M2

0

[

log

(
1 + hMP (hM , hE)

1 + hEP (hM , hE)

)]+

f(hM)f(hE)dhMdhE <
δ

3
, (B.5)

∫ ∞

M1

∫ ∞

M2

[

log

(
1 + hMP (hM , hE)

1 + hEP (hM , hE)

)]+

f(hM)f(hE)dhMdhE <
δ

3
.

Moreover, for fixed M1 and M2, the dominated convergence theorem implies that

lim
(q1,q2)→∞

q1∑

i=1

q2∑

j=1

[

log

(
1 + hM,iP (hM,i, hE,j)

1 + hE,(j+1)P (hM,i, hE,j)

)]+

Pr

(
hM,i ≤ hM < hM,(i+1),
hE,j ≤ hE < hE,(j+1)

)

= lim
(q1,q2)→∞

q1∑

i=1

q2∑

j=1

∫ hM,(i+1)

hM,i

∫ hE,(j+1)

hE,j

[

log

(
1 + hM,iP (hM,i, hE,j)

1 + hE,(j+1)P (hM,i, hE,j)

)]+

f(hM)f(hE)dhMdhE
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=

∫ M1

0

∫ M2

0

[

log

(
1 + hMP (hM , hE)

1 + hEP (hM , hE)

)]+

f(hM)f(hE)dhMdhE. (B.6)

Choosing M1, M2 that satisfy (B.5) and combining (B.5) and (B.6), we see that for a

given δ, there exist sufficiently large q1, q2 such that

q1∑

i=1

q2∑

j=1

[

log

(
1 + hM,iP (hM,i, hE,j)

1 + hE,(j+1)P (hM,i, hE,j)

)]+

Pr

(
hM,i ≤ hM < hM,(i+1),
hE,j ≤ hE < hE,(j+1)

)

≥
∫ ∞

0

∫ ∞

0

[

log

(
1 + hMP (hM , hE)

1 + hEP (hM , hE)

)]+

f(hM)f(hE)dhMdhE − 2δ. (B.7)

Combining (B.4) and (B.7), we get the desired result.

We now prove the converse part by showing that for any perfect secrecy rate Rs

with equivocation rate Re > Rs − ε and error probability P n
e → 0 as n → ∞, there

exists a power allocation policy P (hM , hE) satisfying the average power constraint,

such that

Rs ≤
∫∫ [

log

(
1 + hMP (hM , hE)

1 + hEP (hM , hE)

)]+

f(hM)f(hE)dhMdhE.

Consider any sequence of (2nRs, n) codes with perfect secrecy rate Rs and equivocation

rate Re, such that Re > Rs − ε, with average power less than or equal to P̄ and error

probability P n
e → 0 as n → ∞. Let N(hM , hE) denote the number of times the

channel is in fading state (hM , hE) over the interval [0, n]. Also let P n(hM , hE) =

E
{∑n

i=1 |xw(i)|21{hM (i)=hM ,hE(i)=hE}

}
, where {xw} are the codewords corresponding

to the message w and the expectation is taken over all codewords. We note that

the equivocation H(W |Zn, hn
M , hn

E) only depends on the marginal distribution of Zn,

and thus does not depend on whether Z(i) is a physically or stochastically degraded

version of Y (i) or vice versa. Hence we assume in the following derivation that for

any fading state, either Z(i) is a physically degraded version of Y (i) or vice versa
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(since the noise processes are Gaussian), depending on the instantaneous channel

state. Thus we have

nRe = H(W |Zn, hn
M , hn

E)

(a)

≤ H(W |Zn, hn
M , hn

E) − H(W |Zn, Y n, hn
M , hn

E) + nδn

= I(W ; Y n|Zn, hn
M , hn

E) + nδn

(b)

≤ I(Xn; Y n|Zn, hn
M , hn

E) + nδn

= H(Y n|Zn, hn
M , hn

E) − H(Y n|Xn, Zn, hn
M , hn

E) + nδn

=

n∑

i=1

[
H(Y (i)|Y i−1, Zn, hn

M , hn
E) − H(Y (i)|Y i−1, Xn, Zn, hn

M , hn
E)
]
+ nδn

(c)

≤
n∑

i=1

[H(Y (i)|Z(i), hM(i), hE(i)) − H(Y (i)|X(i), Z(i), hM(i), hE(i))] + nδn

=

n∑

i=1

I(X(i); Y (i)|Z(i), hM(i), hE(i)) + nδn

=

n∑

i=1

∫∫

I(X; Y |Z, hM , hE)1{hM (i)=hM ,hE(i)=hE}dhMdhE + nδn (B.8)

=

∫∫

I(X; Y |Z, hM , hE)N(hM , hE)dhMdhE + nδn

(d)

≤
∫∫

N(hM , hE)

[

log

(
1 + hMP n(hM , hE)

1 + hEP n(hM , hE)

)]+

dhMdhE + nδn.

In the above derivation, (a) follows from the Fano inequality, (b) follows from the data

processing inequality since W → Xn → (Y n, Zn) forms a Markov chain, (c) follows

from the fact that conditioning reduces entropy and from the memoryless property

of the channel, (d) follows from the fact that given hM and hE, the fading channel

reduces to an AWGN channel with channel gains (hM , hE) and average transmission

power P n(hM , hE), for which

I(X; Y |Z, hM , hE) ≤ [log(1 + hMP n(hM , hE)) − log(1 + hEP n(hM , hE))]+ ,
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as shown in [13, 57]. Since the codewords satisfy the power constraint, we have

∫∫

P n(hM , hE)

(
N(hM , hE)

n

)

dhMdhE ≤ P̄ .

For any hM , hE such that f(hM , hE) 6= 0, {P n(hM , hE)} are bounded sequences in

n. Thus there exists a subsequence that converges to a limit P (hM , hE) as n → ∞.

Since for each n, the power constraint is satisfied, we have

∫∫

P (hM , hE)f(hM)f(hE)dhMdhE ≤ P̄ . (B.9)

Now, we have

Re ≤
∫∫

N(hM , hE)

n

[

log

(
1 + hMP n(hM , hE)

1 + hEP n(hM , hE)

)]+

dhMdhE + δn.

Taking the limit along the convergent subsequence and using the ergodicity of the

channel, we get

Re ≤
∫∫ [

log

(
1 + hMP (hM , hE)

1 + hEP (hM , hE)

)]+

f(hM)f(hE)dhMdhE + δn.

The claim is thus proved.

B.2 Main Channel CSI at the Transmitter (Theorem 11)

Let Rs = C
(M)
s − δ for some small δ > 0. Let n = n1m, where n1 represents

the number of symbols transmitted in each coherence interval, and m represents

the number of coherence intervals over which the message W is transmitted. Let

R = E{log (1 + hMP (hM))}− ε. We first generate all binary sequences {V} of length

nR and then independently assign each of them randomly to one of 2nRs groups,

according to a uniform distribution. This ensures that any of the sequences are

equally likely to be within any of the groups. Each secret message w ∈ {1, · · · , 2nRs}
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is then assigned a group V(w). To encode a particular message w, the stochastic

encoder randomly selects a sequence v from the corresponding group V(w), accord-

ing to a uniform distribution. This sequence v consisting of nR bits is then sub-

divided into independent blocks {v(1), · · · ,v(m)}, where the block v(i) consists of

n1 [log (1 + hM(i)P (hM(i))) − ε] bits, and is transmitted in the ith coherence interval

(i ∈ {1, · · · , m}). As m → ∞, using the ergodicity of the channel, we have

lim
m→∞

m∑

i=1

n1 [log (1 + hM (i)P (hM(i))) − ε]

= n1m [E{log (1 + hMP (hM))} − ε] = nR.

We then generate i.i.d. Gaussian codebooks {Xn1(i) : i = 1, · · · , m} consisting of

2n1[log(1+hM (i)P (hM (i)))−ε] codewords, each of length n1 symbols. In the ith coherence

interval, the transmitter encodes the block v(i) into the codeword xn1(i), which is

then transmitted over the fading channel. The legitimate receiver receives yn1(i) while

the eavesdropper receives zn1(i) in the ith coherence interval. We denote vectors of the

form {Xn1(1), · · · , Xn1(m)} as Xn1(1 : m). The equivocation rate at the eavesdropper

can then be lower bounded as follows.

nRe = H(W |Zn1(1 : m), hn
M , hn

E)

= H(W, Zn1(1 : m)|hn
M , hn

E) − H(Zn1(1 : m)|hn
M , hn

E)

= H(W, Zn1(1 : m), Xn1(1 : m)|hn
M , hn

E) − H(Zn1(1 : m)|hn
M , hn

E)

−H(Xn1(1 : m)|W, Zn1(1 : m), hn
M , hn

E)
︸ ︷︷ ︸

A

= H(Xn1(1 : m)|hn
M , hn

E) + H(W, Zn1(1 : m)|Xn1(1 : m), hn
M , hn

E)

−H(Zn1(1 : m)|hn
M , hn

E) − A
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≥ H(Xn1(1 : m)|hn
M , hn

E) + H(Zn1(1 : m)|Xn1(1 : m), hn
M , hn

E)

−H(Zn1(1 : m)|hn
M , hn

E) − A

= H(Xn1(1 : m)|hn
M , hn

E) − I(Zn1(1 : m); Xn1(1 : m)|hn
M , hn

E) − A

= H(Xn1(1 : m)|Zn1(1 : m), hn
M , hn

E) − A

(a)
=

m∑

i=1

H(Xn1(i)|Zn1(i), hM(i), hE(i)) − A

(b)

≥
∑

i∈Nm

H(Xn1(i)|Zn1(i), hM(i), hE(i)) − A

=
∑

i∈Nm

[H(Xn1(i)|hM(i), hE(i)) − I(Xn1(i); Zn1(i)|hM(i), hE(i))] − A

≥
∑

i∈Nm

n1 [log (1 + hM(i)P (hM(i))) − log (1 + hE(i)P (hM(i))) − ε] − A

≥
m∑

i=1

n1

{[

log

(
1 + hM(i)P (hM(i)

1 + hE(i)P (hM(i)

)]+

− ε

}

− A

(c)
= nC(M)

s − A − nε. (B.10)

In the above derivation, (a) follows from the memoryless property of the channel

and the independence of the Xn1(i)’s, (b) is obtained by removing all those terms

which correspond to the coherence intervals i /∈ Nm, where the set Nm is defined as

Nm = {i ∈ {1, · · · , m} : hM(i) > hE(i)}, and (c) follows from the ergodicity of the

channel as m → ∞.

Now we show that the term A = H(Xn1(1 : m)|W, Zn1(1 : m), hn
M , hn

E) vanishes

as m, n1 → ∞ by using a list decoding argument. In this list decoding, at coher-

ence interval i, the eavesdropper first constructs a list Li such that xn1(i) ∈ Li if

(xn1(i), zn1(i)) are jointly typical. Let L = L1 × L2 × · · · × Lm. Given w, the eaves-

dropper declares that x̂n = (xn1(1), · · · , xn1(m)) was transmitted, if x̂n is the only

codeword such that x̂n ∈ B(w)∩L, where B(w) is the set of codewords corresponding

to the message w. If the eavesdropper finds none or more than one such sequence,
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then it declares an error. Hence, there are two type of error events: 1) E1: the trans-

mitted codeword xn
t is not in L, 2) E2: ∃xn 6= xn

t such that xn ∈ B(w)∩ L. Thus the

error probability Pr(x̂n 6= xn
t ) = Pr(E1 ∪ E2) ≤ Pr(E1) + Pr(E2). Based on the AEP,

we know that Pr(E1) ≤ ε1. In order to bound Pr(E2), we first bound the size of Li.

We let

φi(x
n1(i)|zn1(i)) =

{
1, when (xn1(i), zn1(i)) are jointly typical,
0, otherwise.

(B.11)

Now

E{‖Li‖} = E







∑

xn1 (i)

φi(x
n1(i)|zn1(i))







≤ E






1 +

∑

xn1 (i)6=x
n1
t (i)

φi(x
n1(i)|zn1(i))







≤ 1 +
∑

xn1 (i)6=x
n1
t (i)

E {φi(x
n1(i)|zn1(i))}

≤ 1 + 2n1[log(1+hM (i)P (hM (i)))−log(1+hE(i)P (hM (i)))−ε]

≤ 2
n1

“

[log(1+hM (i)P (hM (i)))−log(1+hE(i)P (hM (i)))−ε]++ 1
n1

”

. (B.12)

Hence

E{‖L‖} =

m∏

i=1

E{‖Li‖}

≤ 2

m
P

i=1
n1

“

[log(1+hM (i)P (hM (i)))−log(1+hE(i)P (hM (i)))−ε]++ 1
n1

”

. (B.13)

Thus

Pr(E2) ≤ E







∑

xn∈L,xn 6=xn
t

Pr(xn ∈ B(w))







(a)

≤ E
{
‖L‖2−nRs

}
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≤ 2−nRs2

m
P

i=1
n1

“

[log(1+hM (i)P (hM (i)))−log(1+hE(i)P (hM (i)))−ε]++ 1
n1

”

≤ 2
−n

„

Rs−
1
m

m
P

i=1

“

[log(1+hM (i)P (hM (i)))−log(1+hE(i)P (hM (i)))−ε]++ 1
n1

”

«

= 2
−n

„

Rs−
1
m

m
P

i=1

“

[log(1+hM (i)P (hM (i)))−log(1+hE(i)P (hM (i)))]++ 1
n1

”

+ |Nm|ε
m

«

,

where (a) follows from the uniform distribution of the codewords in B(w). Now as

n1 → ∞ and m → ∞, we get

Pr(E2) ≤ 2−n(Cs−δ−Cs+cε) = 2−n(cε−δ),

where c = Pr(hM > hE). Thus, by choosing ε > (δ/c), the error probability Pr(E2) →

0 as n → ∞. Now using Fano’s inequality, we get

A = H(Xn1(1 : m)|W, Zn1(1 : m), hn
M , hn

E) ≤ nδn → 0 as n → ∞.

Combining this with (B.10), we get the desired result.

For the converse part, consider any sequence of (2nRs, n) codes with perfect secrecy

rate Rs and equivocation rate Re, such that Re > Rs − ε, with average power less

than or equal to P̄ and error probability P n
e → 0 as n → ∞. We follow the same

steps used in the proof of the converse in Theorem 10 with the only difference that

now the transmission power P n(.) only depends on hM . From (B.8), we get

nRe ≤
n∑

i=1

∫∫

I(X; Y |Z, hM , hE)1{hM (i)=hM ,hE(i)=hE}dhMdhE + nδn

=

∫∫

I(X; Y |Z, hM , hE)N(hM , hE)dhMdhE + nδn

≤
∫∫

N(hM , hE)

[

log

(
1 + hMP n(hM)

1 + hEP n(hM)

)]+

dhMdhE + nδn.

This follows from the fact that given hM and hE, the fading channel reduces to an

AWGN channel with channel gains (hM , hE) and average transmission power P n(hM),

for which Gaussian inputs are known to be optimal [13, 57].
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Similar to the proof of Theorem 10, we take the limit over the convergent subse-

quence and use the ergodicity of the channel to obtain

Re ≤
∫∫ [

log

(
1 + hMP (hM)

1 + hEP (hM)

)]+

f(hM)f(hE)dhMdhE + δn, (B.14)

where E{P (hM)} ≤ P̄ . The claim is thus proved.

B.3 ARQ Feedback to the Transmitter (Theorem 12)

Since the transmitter does not have any knowledge of the main and eavesdropper

channels, we adopt a transmission strategy with constant rate R and power P . Let the

achievable secrecy rate be Rs. We first generate all binary sequences {V} of length nR

and then independently assign each of them randomly to one of 2nRs groups, according

to a uniform distribution. This ensures that any of the sequences are equally likely

to be within any of the groups. Each secret message w ∈ {1, · · · , 2nRs} is then

assigned a group V(w). To encode a particular message w, the stochastic encoder

randomly selects a sequence v from the corresponding group V(w), according to a

uniform distribution. This sequence v consisting of nR bits is then sub-divided into

m independent blocks v(1), · · · ,v(m), where each block v(i) consists of n1R bits.

Here n1 is the length of a coherence interval and n = n1m.

From this point, the encoding scheme differs depending on whether we want to use

Incremental Redundancy ARQ or Repetition ARQ. We first consider the encoding

scheme for the IR-ARQ case. To transmit a given v(i) in this case, we first generate

an i.i.d Gaussian codebook consisting of 2n1R codewords of length n1, and transmit

the codeword Xn1
1 (i) (the subscript here represents the transmission round) corre-

sponding to v(i). The observations received at the destination and the eavesdropper
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are denoted by Y n1
1 (i) and Zn1

1 (i) respectively. Let hM,k(i) and hE,k(i) denote the fad-

ing power gains of the main and eavesdropper channels during the kth transmission

round for v(i). If the transmission rate R is less than the instantaneous capacity of

the main channel log (1 + hM,1(i)P ), then the destination can successfully decode v(i)

and the transmitter proceeds with the transmission of v(i + 1). Otherwise, a NACK

is fed back to the transmitter. On receiving a NACK, the transmitter forms another

i.i.d Gaussian codebook of size 2n1R, independent from the first one, and transmits

the new codeword Xn1
2 (i) corresponding to v(i). At the destination, the decoding for

v(i) is performed jointly using both Y n1
1 (i) and Y n1

2 (i). Again if the rate R is less

than the new mutual information
∑2

k=1 log (1 + hM,k(i)P ), the destination can suc-

cessfully decode v(i), otherwise it sends back another NACK bit to the transmitter.

A similar procedure is followed until the destination successfully decodes v(i), i.e.,

when R ≤ ∑Li

k=1 [log (1 + hM,k(i)P )], where Li denotes the number of transmission

rounds required for successfully decoding v(i). Then the same IR-ARQ strategy is

applied for transmitting the next block v(i + 1).

For the Rep-ARQ scheme, once a NACK bit is fed back to the transmitter, it

merely repeats the codeword Xn1
1 (i) in each transmission round (instead of generat-

ing a new i.i.d Gaussian codebook). This repetition procedure continues until the

destination successfully decodes v(i), i.e., when R ≤ log
[

1 +
∑Li

k=1 hM,k(i)P
]

. We

note that the eavesdropper will be able to successfully decode the block v(i) only if

R ≤∑Li

k=1 [log (1 + hE,k(i)P )] and R ≤ log
[

1 +
∑Li

k=1 hE,k(i)P
]

for the IR-ARQ and

Rep-ARQ schemes respectively.

We now introduce the following notations: The number of transmission rounds

for the m different blocks are denoted by {L1, L2, · · · , Lm}. For any block v(i), let
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Xn1(i) = {Xn1
1 (i), · · · , Xn1

Li
(i)} be the corresponding independent codewords trans-

mitted until successful decoding at the destination. Let Yn1(i) =
{
Y n1

1 (i), · · · , Y n1
Li

(i)
}

and Zn1(i) =
{
Zn1

1 (i), · · · , Zn1
Li

(i)
}

be the corresponding received sequences at the

destination and eavesdropper respectively. Also let hM(i) = {hM,1, · · · , hM,Li
} and

hE(i) = {hE,1, · · · , hE,Li
} denote the main and eavesdropper channel power gains

during the transmission of block v(i), and hM = {hM(1), · · · ,hM(m)} and hE =

{hE(1), · · · ,hE(m)} denote the entire vector of channel power gains at the destina-

tion and eavesdropper respectively. Since a message w is mapped to m blocks and

each block v(i) is transmitted for Li transmission rounds, the total number of channel

uses required for transmitting the message is given by n1(L1 + · · · + Lm). We now

calculate the equivocation rate at the eavesdropper as follows:

n1(L1 + L2 + · · ·+ Lm)Re

= H(W |Zn1(1 : m),hM ,hE)

= H(W,Zn1(1 : m)|hM ,hE) − H(Zn1(1 : m)|hM ,hE)

= H(W,Zn1(1 : m),Xn1(1 : m)|hM ,hE) − H(Zn1(1 : m)|hM ,hE)

−H(Xn1(1 : m)|W,Zn1(1 : m),hM ,hE)
︸ ︷︷ ︸

B

= H(Xn1(1 : m)|hM ,hE) + H(W,Zn1(1 : m)|Xn1(1 : m),hM ,hE)

−H(Zn1(1 : m)|hM ,hE) − B

≥ H(Xn1(1 : m)|hM ,hE) + H(Zn1(1 : m)|Xn1(1 : m),hM ,hE)

−H(Zn1(1 : m)|hM ,hE) − B

= H(Xn1(1 : m)|hM ,hE) − I(Zn1(1 : m);Xn1(1 : m)|hM ,hE) − B

= H(Xn1(1 : m)|Zn1(1 : m),hM ,hE) − B
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(a)
=

m∑

i=1

H(Xn1(i)|Zn1(i),hM(i),hE(i)) − B

(b)

≥
∑

i∈Nm

H(Xn1(i)|Zn1(i),hM(i),hE(i)) − B

=
∑

i∈Nm

[H(Xn1(i)|hM(i),hE(i)) − I(Xn1(i);Zn1(i)|hM(i),hE(i))] − B

=
∑

i∈Nm

n1

[

R −
Li∑

k=1

log (1 + hE,k(i)P )

]

− B

≥
m∑

i=1

n1

[

R −
Li∑

k=1

log (1 + hE,k(i)P )

]+

− B.

In the above derivation, (a) follows from the memoryless property of the channel and

the independence of the Xn1(i)’s, and (b) is obtained by removing all those terms

which correspond to the blocks which can be succesfully decoded by the eavesdropper,

i.e.,

Nm =

{

i ∈ {1, · · · , m} : R >

Li∑

k=1

log (1 + hE,k(i)P )

}

.

The term B = H(Xn1(1 : m)|W,Zn1(1 : m),hM ,hE) can be shown to vanish as

m, n1 → ∞ using a list decoding argument similar to the one in Appendix B.2. Thus,

as m, n1 → ∞, we get

n1(L1 + L2 + · · ·+ Lm)Re ≥
m∑

i=1

n1

[

R −
Li∑

k=1

log (1 + hE,k(i)P )

]+

− ε.

Since m → ∞, using the ergodicity of the main and eavesdropper channels, we get

nE[L]Re ≥ nE





(

R −
L∑

k=1

log (1 + hE,kP )

)+


− ε,

where the expectation on the right is taken over both the number of transmission

rounds L and the wiretapper channel gains {hE,k}. Thus

Re ≥
E

[(

R −∑L
k=1 log (1 + hE,kP )

)+
]

E[L]
− ε

′

.
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The perfect secrecy rate achieved by the Rep-ARQ scheme can also be derived in a

similar manner, with the only difference being that for the Rep-ARQ scheme we have

I(Xn1(i);Zn1(i)|hM(i),hE(i)) = log

[

1 +

Li∑

k=1

hE,k(i)P

]

.

Using this fact in the above derivation yields (3.16), which completes the proof of the

theorem.
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