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Abstract- In this paper, we adopt a cross layer design
approach for analyzing the throughput-delay tradeoff of the
multicast channel in a single cell system. To illustrate the main
ideas, we start with the single group case, i.e., pure multicast,
where a common information stream is requested by all the
users. We consider three classes of scheduling algorithms with
progressively increasing complexity. The first class strives for
minimum complexity by resorting to a static scheduling strategy
along with memoryless decoding. Our analysis for this class of
scheduling algorithms reveals the existence of a static scheduling
policy that achieves the optimal scaling law of the throughput
at the expense of a delay that increases exponentially with the
number of users. The second scheduling policy resorts to a
higher complexity incremental redundancy encoding/decoding
strategy to achieve a superior throughput-delay tradeoff. The
third, and most complex, scheduling strategy benefits from the
cooperation between the different users to minimize the delay
while achieving the optimal scaling law of the throughput.
In particular, the proposed cooperative multicast strategy is
shown to simultaneously achieve the optimal scaling laws of
both throughput and delay. Then, we generalize our scheduling
algorithms to exploit the multi-group diversity available when
different information streams are requested by different subsets
of the user population. Finally, we discuss the potential gains of
equipping the base station with multiple transmit antennas and
present simulation results that validate our theoretical claims.

I. INTRODUCTION
Traditional information theoretic investigations pay little, if

any, attention to the notion of delay. Clearly, this approach
is not adequate for many applications, especially those with
strict Quality of Service (QoS) constraints. To avoid this
shortcoming, there has been a growing interest in cross layer
design approaches in recent years. The underlying idea in these
approaches is to jointly optimize the physical, data link, and
network layers in order to satisfy the QoS constraints with
the minimum expenditure of network resources. Recent works
on cross layer design have considered multi-user cellular
networks [ 1-3]. These works have enhanced our understanding
of the fundamental tradeoffs in this scenario and the structure
of optimal resource allocation strategies. In this paper, we take
a first step towards generalizing this cross layer approach to the
wireless multicast scenario. This scenario is characterized by
a strong interaction between the network, medium access, and
physical layers. This interaction adds significant complexity
to the problem which motivated the adoption of a simplified
on-off model for the wireless channel in the recent works
on wireless multicast [4]. However, we argue that employing

more accurate models for the wireless channel allows for
valuable opportunities for exploiting the wireless medium to
yield performance gains. More specifically, our work sheds
light on the role of the following characteristics of the wireless
channel in the design of multicast scheduling strategies: 1) The
multi-user diversity resulting from the statistically independent
channels seen by the different users [5], 2) The wireless
multicast gain resulting from the fact that any information
transmitted over the wireless channel is overheard by all
the users (with possibly different attenuations), and 3) The
cooperative gain resulting from antenna sharing between users
[6].
To illustrate the main ideas, we first focus on the single

group (pure multicast) scenario where the same information
stream is transmitted to all users in the network [7]. We pro-
pose three classes of scheduling algorithms with progressively
increasing complexity and characterize the throughput-delay
tradeoff achieved by each class. Thereby, we establish the
asymptotic throughput optimality of the median user scheduler
and show that the proposed cooperative multicast scheme
achieves the optimal scaling laws of both throughput and delay
at the expense of a high complexity. Then, we extend our
study to the multi-group scenario where independent streams
of information are transmitted to different groups of users.
Here, we generalize our scheduling algorithms to exploit the
multi-group diversity available in such scenarios. Finally, we
quantify the potential performance gains allowed by equipping
the base station with multiple transmit antennas.

II. SYSTEM MODEL

We consider the downlink of a single cell system where
a base station serves G symmetric groups of users. The
information streams requested by the different groups from the
base station are independent of each other. Each group consists
of N symmetric users. All the users within a group request
the same information from the base station. Unless otherwise
stated, the base station is assumed to be equipped with a single
transmit antenna, and communicates to the users through a
wireless fading channel. Each user is assumed to have only a
single receive antenna. The fading is assumed to be Rayleigh
distributed with unit mean and is i.i.d. across users. The noise
at each user is assumed to be zero-mean, unit variance, cir-
cularly symmetric complex AWGN. We consider quasi-static
fading wherein the fading coefficients remain constant for a
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coherence interval and change independently from one interval
to the next. The short term average power (over each coherence
interval) used at the base station is constrained to be less than
P. Each packet transmitted by the base station is assumed to be
of constant size. We assume that rate adaptation is possible at
the base station. The proposed scheduling schemes, except the
incremental redundancy scheme, assume perfect knowledge
of the channel state information (CSI) at both the transmitter
and receiver. We further assume the use of capacity achieving
codes at the base station.
We compare the proposed scheduling schemes in terms of

their throughput and delay performance. The throughput of
a scheme is defined as the sum of throughputs provided to
all the users within all the groups in the system. In our delay
analysis, we consider backlogged queues. We define the delay
of a scheme as the delay between the start of transmission
of a packet belonging to a particular group of users, and the
instant when the packet is successfully decoded by all the users
in that group. Thus our definition of delay includes only the
transmission delay and does not account for the queuing delay
experienced by the packets. To facilitate analytical tractability,
we only focus on evaluating the asymptotic scaling laws of
the throughput and delay, and we make an exponential server
assumption, i.e., the service rate in any time slot is assumed
to follow an exponential distribution with the same mean as
that obtained from our problem formulation. We use the set
of Knuth's asymptotic notations1 throughout the paper.

III. SINGLE GROUP (PURE MULTICAST) SCENARIO
In this section, we consider the pure multicast scenario

where the same information stream is transmitted to all
users in the network. In the non-cooperative scenario, the
throughput-optimal scheme is an N-level superposition cod-
ing/successive decoding scheme. However, this strategy suffers
from excessive complexity, which motivates our work on
the throughput-delay tradeoff of low complexity scheduling
schemes. Interestingly, we identify a low complexity static
scheduling scheme that achieves the optimal scaling law of
the throughput. Furthermore, we establish the optimality of
the proposed cooperative multicast scheme in terms of the
scaling laws of both delay and throughput. The throughput of
any scheduling scheme for this scenario can be upper bounded
by

Rtot < E log (1 + Ihil2P)] = @(N).

A. Static Scheduling With Memoryless Decoding
In this class of scheduling algorithms (referred to as "static

schedulers"), we schedule transmission to a fraction of the
users with favorable channel conditions. The transmission rate
is adjusted such that each transmission by the base station
is intended for successful reception by (N/a) users in the
system. While the identity of the target users change, based

1I)f(n) = O(g(n)) iff there are constants c and no such that f(n) <
cg(n) Wn > no, 2) f (n) = Q(g(n)) iff there are constants c and no such
that f(n) > cg(n) V/n > no, and 3) f(n) = E8(g(n)) iff there are constants
Cl, C2 and no such that clg(n) < f(n) < c2g(n) Vn > no.

on the channel conditions, the static nature of the algorithm
is manifested in the fact that a fixed fraction of the users
is able to decode every transmitted packet (i.e., a is not a
function of time). Hence at any time instant, the base station
transmits to the user whose instantaneous SNR occupies the
(N- (N/a)+ 1i)th position in the ordered list of instantaneous
SNRs of all users. The other ((N/a) - 1) users with higher
channel gains can also decode the transmitted information.
The parameter a of the scheme is restricted to be a factor of
N and satisfies a E Z+ and 1 < a < N. The memoryless
decoding2 assumption is imposed to limit the complexity of
the encoding/decoding process. As shown later, this class of
algorithms exploit both the multi-user diversity and multicast
gains, to varying degrees, depending on the parameter a.
The average throughput of this general static scheduling

scheme is given by

Rt= () E [log (I + Ihlr(N N+1)IP)1
where Ih(N +1)12 is the channel power gain of the user
whose SNR occupies the (N - (N/a) + 1)th position in the
ordered list of SNRs of all users. Throughout the paper, the
log(.) function refers to the natural logarithm, and hence, the
average throughput is expressed in nats.
A critical step in the delay analysis is to identify the queuing

model. In our model, the base station maintains (N/7) queues,
one for each combination of (N/a) users. These queues can
be divided into sets with a coupled queues in each set such
that the combinations of users served by the a queues within a
set are mutually exclusive (to ensure that multiple copies of the
same packet are not sent to any of the users) and collectively
exhaustive (to ensure that the packet reaches all the users),
i.e., every user in the system is served by exactly one of the
a queues in each set. For example, with N = 6 users and
a = 3, we have 15 queues divided into 5 sets with three
queues in each set. One possible set of coupled queues serve
users {(1, 2), (3, 4), (5, 6)} and another possible set may serve
users {(1,4), (2,5), (3, 6)}. Note that each user occurs once
and only once in each set (See Fig. 1). Hence, any packet that
arrives at the base station is routed towards one of the sets3
where it is stored in all the a queues within that set (since it
needs to be transmitted to all the users in the system). Thus
the delay in transmitting a particular packet to all the users
is given by the delay in transmitting that packet from each of
the ae coupled queues in the corresponding set. Moreover, the
base station services only one of the (N a) queues at any time,
which is chosen based on the instantaneous fading coefficients
of all the users.

In our analysis, we benefit from the concept of worst case
delay proposed in [8] for analyzing the delay in unicast
networks. In this work, the authors characterized the worst
case delay by restating their problem as the "coupon collector
problem" which has been studied extensively in the mathe-
matics literature [91, [10]. In the coupon collector problem,

2Memoryless decoding refers to the fact that the decoder memory is flushed
in case of decoding failure.

3Here, we use a probabilistic approach for choosing the set with a uniform
distribution.
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Fig. 1. A queuing model for a system with N = 6 users and ca = 3

the users are assumed to have coupons and the transmitter
is the collector that selects one of the users randomly (with
uniform distribution) and collects his coupon. The problem is
to characterize the average number of trials required to ensure
that the collector collects m coupons from all the users. Our
queuing problem is analogous to the coupon collector problem
with the only fundamental difference being that the size of the
coupons is time-varying in our problem due to rate adaptation.
We now characterize the scaling laws of throughput and delay
for the different static scheduling algorithms.
Theorem 1: The average throughput Rt,t of the general

static scheduling scheme is given by

Rtot = j log(1 + xP)dF(x), (1)
a J

where

F(x) = e(N) (1-e)k e-(Nk)x, X> 0.
k=(N- N +1)

The average delay of this scheme satisfies

D =max{Q ((N logN) ((Q N )E[Xmin])}~~N/celoglogN (2)
(2)

where Xmin = min?l Xi and the Xi's are defined as the
service times required for transmitting a packet from the ith
queue of a set of a queues assuming that the server always
services the ith queue.

Proof: The distribution of Ih,(N+±)I2 is given by
F(x). Hence the throughput is as given in (1). The delay
analysis follows the same lines as that in [8] but is modified
to incorporate the effect of rate adaptation at the base station.
For a detailed proof, refer [1 1]. U
We now study three special cases of this general static

scheduling scheme in more detail to shed light on the
throughput-delay tradeoff achievable by varying a.

14

1) Worst User Scheduler (a = 1): The worst user scheme
maximally exploits the multicast gain by always transmitting
to the user with the least instantaneous SNR. This enables
each transmission to be successfully decoded by all the users
in the system. However, the multi-user diversity inherent in
the system works against the performance of this scheme and
results in a decrease in the individual throughput to any user.
The base station maintains a single queue that caters to all the
users in the system.
Lemma 1: The average throughput of the worst user

scheme scales as
Rtot = 0(1) (3)

with the number of users N. The average delay scales as

D = @(N). (4)
Proof: It can be shown that E [Ih7r(l)12] = ((1/N).

Hence Rtot = NE [log(1 + Ih7r(1)12P)] = 0(1). Since the
rate to any user is E)(1/N), the delay can be shown to be
e)(N). For a detailed proof, refer [11].1

2) Best User Scheduler (a = N): This scheme maximally
exploits the multi-user diversity available in the system. Since
the transmission rate is adjusted based on the user with the
maximum instantaneous SNR, this scheme fails to exploit
any of the multicast gain and any particular packet must be
repeated N times. The base station maintains N queues, one
for each user in the system, and any packet that arrives into
the system enters all the N queues.
Lemma 2: The average throughput of the best user scheme

scales as
Rt,t = 0 (log log N)

with the number of users N. The average delay scales as

(5)

D =Q (1 log N)(6)(Nglog N\
Proof: The throughput of the best user scheme is shown

to be Rtot = 0)(loglogN) in [8]. The worst case delay for
a constant rate is shown to be O(NlogN) in [8]. Since the
rate to any user now is 0(loglog N), the delay can be shown
to be as given in (6). For a detailed proof, refer [11].
From Lemmas 1 and 2, one can conclude that maximally ex-

ploiting the multi-user diversity yields higher throughput gains
than maximally exploiting the multicast gain. This throughput
gain, however, is obtained at the expense of a higher delay.

3) Median User Scheduler (a = 2): This scheme strikes
a balance between exploiting multi-user diversity and mul-
ticast gain. The base station always transmits to the user
whose instantaneous SNR occupies the median position of
the ordered list of SNRs. Each transmission is, therefore,
successfully decoded by half the users in the system and the
same information needs to be repeated only twice before it
reaches all the users. Thus, unlike the best user scheduler, this
scheduler benefits from the wireless multicast gain. Moreover,
unlike the worst user scheduler, the inherent multi-user diver-
sity does not degrade the performance of this scheduler (since
the instantaneous SNR of the median user is not expected to
degrade with N). In fact, we show in the following that this
scheme achieves the optimal scaling law of the throughput as
the number of users N grows to infinity.
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Lemma 3: The proposed median user scheme achieves the
optimal scaling law of the throughput. The average throughput
of this scheme scales as

Rtot = 8(N) (7)
with the number of users N. The average delay scales as

D(=0(N12) ) (N_ (8)

Proof: Since E[log(l+ Ihx( 2) wP)] = 8(1) we

have Rtot = 8(N). Since there are ( N2) queues in the system
(divided into sets of two coupled queues) and the base station
serves only one queue at any time, the delay can be shown to
be (( N2)). For a detailed proof, refer [1i.

Thus the throughput optimality of the median user scheduler
is obtained at the expense of an exponentially increasing delay
with the number of users N.

B. Incremental Redundancy Multicast
In this section, we relax the memoryless decoding re-

quirement and propose a hybrid Automatic Repeat reQuest
(ARQ) scheme that employs a higher complexity incremental
redundancy encoding/decoding strategy to achieve a better
throughput-delay tradeoff than the static scheduling schemes.
The proposed scheme is an extension of the incremental
redundancy scheme in [121. An information sequence of b
bits is encoded into a codeword of length LM, where MI
refers to the rate constraint. The first L bits of the codeword
are transmitted in the first attempt. If a user is unable to
successfully decode the transmission, it sends back an ARQ
request to the base station. If the base station receives an ARQ
request from any of the users, it transmits the next L bits of
the same codeword in the next attempt. This process continues
until either all N users successfully decode the information
or the rate constraint M is violated. Then the codeword
corresponding, to the next b information bits is transmitted in
the same fashion. This scheme does not require the knowledge
of perfect CSI at the base station. The base station only needs
to know when to stop transmission of the current codeword.
Hence the feedback required is minimal. The following result
for the unconstrained case (M -4 no) establishes the superior
throughput-delay tradeoff achieved by this scheme.
Theorem 2: The average throughput of the incremental

redundancy scheme scales as

Rtot = 0 (N log logN (9)
R~~= k logN )(9

with the number of users N. The average delay scales as

D= ( logN(.0logloN)g (10)
Proof: Refer [11] for a detailed proof.

Thus the incremental redundancy scheme avoids the expo-
nentially growing delay of the median user scheduler at the
expense of a minimal penalty in throughput. Moreover, the
base station needs to maintain only a single queue that serves
all the users in the system. This approach, however, entails
added complexity in the incremental redundancy encoding and
the storage and joint decoding of all the observations.

C. Cooperative Multicast
In this section, we demonstrate the benefits of user coopera-

tion and quantify the tremendous gains that can be achieved by
allowing the users to cooperate with each other. In particular,
we propose a cooperation scheme that minimizes the delay
while achieving the optimal scaling law of the throughput.
This scheme is divided into two stages. In the first half of
each time slot, the base station transmits the packet to one
half of the users in the system (i.e., the median user scheduler).
During the next half of the slot, the base station remains silent.
Meanwhile, all the users that successfully decoded the packet
in the first half of the slot cooperate with each other and
transmit the packet to the other (N/2) users in the system.
Through antenna sharing, the (N/2) cooperating users mimic
a multi-antenna system with (N/2) transmit antennas. If Rf8
and RS2 are the rates supported in the first and second stage
respectively, then the actual transmission rate is chosen to
be m1in{R,1, R82} in both stages of the cooperation scheme.
Note that the rate RS2 is chosen such that the information can
be successfully decoded even by the worst of the remaining
(N/2) users. Here, we note that this scheme requires the base
station to know the CSI of the inter-user channels. The scheme,
however, does not require the users to have such transmitter
CSI (i.e., in the second stage the users cooperate blindly by
using i.i.d. random coding). The average throughput of the
proposed cooperation scheme is thus given by

Rtot= () E[mnin{R1,R82}].

The following result establishes the optimality of the pro-
posed scheme, in terms of the scaling laws of both the
delay and the throughput. Here we assume that the inter-
user channels have the same fading statistics as the channels
between the base station and users, and the total transmitted
power is upper bounded by P.
Theorem 3: The proposed cooperation scheme achieves

the optimal scaling laws of both delay and throughput. In
particular, the average throughput of this scheme scales as

Rtot = ((N) (1 1)

with the number of users N, while the average delay scales
as

D = 0(1). (12)
Proof: From Lemma 3, the throughput of the first stage is

known to be C(N). It can be shown that the throughput of the
second stage is also @(N). Since the information transmitted
in the first half of each time slot reaches all the N users at
the end of the slot, and the rate to any user is 8(1), the delay
scales as E(1). For a detailed proof, refer [IlI. U
The price for this optimal performance is the added com-

plexity needed to 1) equip every user with a transmitter, 2)
decode/re-encode the information at each cooperating user,
and 3) provide perfect CSI of the inter-user channels to the
base station.

IV. MULTI-GROUP DIVERSITY

In this section, we generalize the scheduling schemes
proposed in Section III to the multi-group scenario where
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different information streams are requested by different subsets
of the user population. We modify the proposed schemes to
exploit the multi-group diversity available in this scenario by
always transmitting to the best group. We characterize the
asymptotic scaling laws of the throughput and delay of the
static schedulers with the number of users per group N and
the number of groups G in the following theorem.
Theorem 4: 1) The average throughput of the best

among worst users scheme scales as4

Rt,t = e (log G) (13)

with N and G. The average delay scales as

D e(1NG). (14)

2) The average throughput of the best among best users
scheme scales as

Rt,t = (9(log log NG) (15)

with N and G. The average delay scales as

D Q (NG logN)( 16)

3) The average throughput of the best among median users
scheme satisfies

Q(N) = Rt,t = O(NloglogG), (17)

while the average delay of this scheme satisfies

Q Dl ) =D=OQjj). (18)

Proof: Refer [110 for a detailed proof. U
In the multi-group incremental redundancy scheme, the

information bits corresponding to each of the groups are
encoded independently. During each time slot, the base station
selects that group for which it can send the highest total
instantaneous rate to the users who failed to decode up to this
point. This selection process makes the scheme "dynamic" in
the sense that the outcome of the scheduling process at any
particular time slot depends on the outcomes in all previous
slots. Unfortunately, this dynamic nature of the proposed
scheme adds significant complexity to the problem and, at
the moment, we do not have an analytical characterization of
the corresponding scaling laws.

In the multi-group cooperation scheme, during each time
slot, the base station selects the best group g for transmission
according to the condition

g=arg !axG{m(N) min{Rg1, R2}g} (19)

Theorem 5: The average throughput of the proposed multi-
group cooperation scheme satisfies

Q(N) = Rtot = 0 (NloglogG), (20)
while the average delay of this scheme satisfies

Q(l = D =O(G). (21) b)

4Note that E(log G) AL 0 when G = 1, since k + log G = E(log G), for
any constant k.

Proof: Refer [1 11 for a detailed proof. a
As expected, the throughput gain resulting from the multi-

group diversity entails a corresponding price in the increased
delay.

V. MULTI-TRANSMIT ANTENNA GAIN

The performance of the proposed static scheduling schemes
depends on the spread of the fading distribution. For exploiting
significant multi-user diversity gains, the distribution needs to
be well-spread out. The lower the spread of the distribution,
the lesser the multi-user diversity gain (or loss as shown in
the following). To illustrate this point, we consider a scenario
where the base station is equipped with L transmit antennas.
We assume that the base station has knowledge of only the
total effective SNR at any particular user and does not know
the individual channel gains from each transmit antenna to that
user. Under this assumption, the base station just distributes
the available power equally among all the L transmit antennas.
Thus the effective fading power gains follow a normalized Chi-
square distribution with 2L degrees of freedom. Note that the
fading power gains are exponentially distributed (Chi-square
with 2 degrees of freedom) in the single transmit antenna
case. We now characterize the asymptotic scaling laws of the
throughput of the proposed static schedulers for this multi-
transmit antenna scenario. Here L is assumed to be a constant
and does not scale with N.

A. Worst User Scheduler
For the worst user scheme, the average throughput is given

by
Rtot = NE [log (1 + 1XminI2P)] I

where IXminI2 = minfX11Xl2, and IXI12 corresponds to the
effective fading power gain at the ith user that follows a nor-
malized Chi-square distribution with 2L degrees of freedom.
Lemma 4: When the base station is equipped with L

transmit antennas, the average throughput of the worst user
scheme scales as

Rtot = E (N(L))) (22)
Proof: Refer [ 1] for a detailed proof. N

Thus the average throughput increases with L. This is
expected since the performance of the worst user scheduler
is degraded by the tail of the fading distribution. Hence, as L
increases, the spread of the fading distribution decreases, and
consequently, the inherent multi-user diversity has a reduced
effect on the performance of the scheduler. This leads to a rise
in the average throughput from 0(1) for the single transmit
antenna case to ((N) for large values of L.

B. Best User Scheduler
For the best user scheme, the average throughput is given

Rtot = E [log (1 + lXmax 12P)] I

where IXmaxrI2 = maxZL1 1x2
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Fig. 2. Comparison of the throughput of the proposed schemes for G = 5
groups

Fig. 3. Comparison of the delay of the proposed schemes for G = 5 groups

Lemma 5: When the base station is equipped with L
transmit antennas, the average throughput of the best user

scheme scales as

Rtot = e (log (l + logN+ (L- 1)loglogN)) (23)

Proof: Refer [11] for a detailed proof.
Since the best user scheduler leverages multi-user diversity

to enhance the throughput, one can see that the throughput of
the best user scheme decreases as L increases.

VI. NUMERICAL RESULTS

Here we present simulation results that validate our theoret-
ical claims. These results were obtained through Monte-Carlo
simulations and were averaged over at least 5000 iterations.
The power constraint P is taken to be unity. For a comparison
of the throughput and delay of all the schemes proposed for
the pure multicast scenario in Section III, please refer [7]. In
Fig. 2, we present a throughput-comparison for the different
scheduling schemes proposed in Section IV for the multi-
group scenario for increasing values of N with G = 5 groups.

The corresponding delay-comparison is presented in Fig. 3.
14

Although the best among worst users scheduler performs better
than the best among best users scheme, in terms of throughput,
for the range of N values shown in the plot, it should be
noted that the latter eventually outperforms the former for
large values ofN (N > 600). Except for this case, we see that
the simulation results follow the same trends predicted by our
asymptotic analysis. Finally, we observe that the utility of our
asymptotic analysis is manifested in its accurate predictions
even with the relatively small number of users used in our
simulations (i.e., in the order of N = 10).

VII. CONCLUSIONS
In this paper, we have used a cross layer design approach to

shed more light on the throughput-delay tradeoff in the cellular
multicast channel. Towards this end, we proposed three classes
of scheduling algorithms with progressively increasing com-
plexity, and analyzed the throughput-delay tradeoff achieved
by each class. We showed that the median user scheduler
achieves the optimal scaling law of the throughput at the
expense of an exponentially increasing delay with the number
of users. We further showed that the proposed cooperative
multicast scheme achieves the optimal scaling laws of both
throughput and delay at the expense of a high RF and compu-
tational complexity. We then generalized our schemes to the
multi-group scenario and characterized their ability to exploit
the multi-group diversity offered by the wireless channel.
Finally, we quantified the performance gains in the multi-
transmit antenna scenario with limited feedback and presented
simulation results that validate our theoretical claims.
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