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Abstract

Recent years have witnessed the importance of cross-layer design in wireless communication

systems. The adoption of simplified on/off models for the wireless channel, in an attempt to reduce it

to the traditional wireline case, has been shown to be highly sub-optimal. In this paper, we consider

more realistic models for the wireless channel and demonstrate the significant performance gains that

can be leveraged from the wireless medium through intelligent scheduling strategies. We consider a

cellular multicast channel, where a central base station transmits the same information stream to all

the users within the system. We design scheduling algorithms for this scenario from a cross-layer

perspective, which aids us in exploiting the characteristics of the wireless medium. We consider three

classes of scheduling algorithms with progressively increasing complexity and study their asymptotic

throughput-delay performance with the number of users in the system. The first class strives for minimum

complexity by resorting to static scheduling along with memoryless decoding. Our analysis reveals

the existence of a scheduling scheme, within this class, that achieves near-optimal scaling laws of

both delay and throughput. The second scheduling policy resorts to a higher complexity incremental

redundancy encoding/decoding strategy to achieve a superior throughput-delay tradeoff. The third, and

most complex, scheduling strategy benefits from the cooperation between the different users and is shown

to simultaneously achieve the optimal scaling laws of both delay and throughput. We further study the

effect of equipping the base station with multiple transmit antennas on the throughput performance of

the proposed low-complexity static schedulers. Finally, we present simulation results that validate our

theoretical claims.

I. INTRODUCTION

Wireless networks are becoming increasingly popular primarily due to their ease of installation

and the freedom of mobility that they offer to the users. Traditional data link and network layer

protocols designed for wireless networks adopt simplified on/off models for the physical layer,

and thereby focus on reducing the system to a wireline scenario. This approach of designing

algorithms based on the assumption that the wireless channel behaves like a reliable, time-

invariant bit-pipe has been shown to be highly sub-optimal, especially for applications with strict

Quality of Service (QoS) constraints. Recent years have witnessed a growing interest in cross-

layer design approaches for wireless system design. The underlying idea in these approaches is

to jointly optimize the physical, data link, and networking layers in order to satisfy the QoS

constraints with the minimum expenditure of network resources. Early investigations on cross-

layer design have focused on the single user case [1], [2]. These works have shed light on the
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fundamental tradeoffs in this scenario and devised efficient power and rate control policies that

approach these limits. More recent works have considered multi-user cellular networks [3]–[7].

These studies have enhanced our understanding of the fundamental limits and the structure of

optimal resource allocation strategies.

In this paper, we take a first step towards generalizing this cross-layer approach to the wireless

multicast channel, where the same information stream is transmitted by the base station to multi-

ple users within the network. Such multicast scenarios have become highly common in broadband

wireless networks, due to their support for streaming video (Mobile TV) applications using the IP

Datacasting (IPDC) and Digital Video Broadcasting-Handheld (DVB-H) frameworks. Moreover,

these multicast scenarios are characterized by a strong interaction between the network, medium

access, and physical layers. This interaction adds significant complexity to the problem which

motivated the adoption of a simplified on/off model for the wireless channel in several of the

recent works on wireless multicast [8]–[10]. In the sequel, we argue that employing more accurate

models for the wireless channel allows for valuable opportunities for exploiting the wireless

medium to yield performance gains. More specifically, our work sheds light on the role of the

following characteristics of the wireless channel in the design of multicast scheduling strategies:

1) The multi-user diversity resulting from the statistically independent channels seen by the

different users [11], 2) The wireless multicast gain resulting from the fact that any information

transmitted over the wireless channel is overheard by all users, possibly with different attenuation

factors, and 3) The cooperative gain resulting from antenna sharing between users [12].

We focus on the scenario where the same information stream is transmitted to all the users in

the network. We consider three classes of scheduling algorithms with progressively increasing

complexity. The first class strives for minimum complexity by resorting to static scheduling

along with memoryless decoding (i.e., the decoder memory is flushed in case of a decoding

failure). Within this class, we study three different schemes that highlight the tradeoff between

exploiting the multiuser diversity gain and the wireless multicast gain offered by the wireless

medium. We characterize the asymptotic scaling of the throughput and delay achieved by each of

these schemes with the number of users in the system. Thereby, we establish the near-optimality

of the proposed median user scheduler both in terms of delay and throughput. The second

scheduling policy is based on a hybrid Automatic Repeat reQuest (ARQ) strategy, and uses

a higher complexity incremental redundancy encoder/decoder to achieve a better throughput-
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delay tradeoff. The third, and most complex, scheduling strategy allows for cooperation between

the different users, thereby exploiting the cooperative gain possible through antenna sharing in

wireless channels. We show that this scheme achieves the optimal scaling of both delay and

throughput with the user population, thereby striking a nice balance between exploiting the

three different opportunities offered by the wireless medium. Finally, we study the effect of

equipping the base station with multiple transmit antennas on the throughput performance of

the proposed low-complexity static schedulers. In particular, we show that when the number

of transmit antennas is large, the wireless multicast gain harnessed by a scheme dominates its

throughput performance.

The rest of the paper is organized as follows. In Section II, we introduce the system model

along with our notation. In Section III, we propose the three classes of scheduling algorithms

for the multicast channel and characterize their asymptotic throughput-delay performance. The

potential performance gains allowed by multi-transmit antenna base stations are quantified in

Section IV. In Section V, we present numerical results that validate our theoretical claims in

certain representative scenarios. Finally, some concluding remarks are offered in Section VI. In

order to enhance the flow of the paper, we collect all the proofs in the Appendices.

II. SYSTEM MODEL

We consider the downlink of a single cell system where a base station (BS) serves a group of

N users. All the users request the same information from the BS. Unless otherwise stated, the

BS is assumed to be equipped with a single transmit antenna. Each user is assumed to have only

a single receive antenna. We consider time-slotted transmission wherein the received symbol

vector at user i in time slot k is given by

yi[k] = hi[k]x[k] + ni[k],

where x[k] denotes the complex-valued vector of length m transmitted by the BS in slot k, hi[k]

represents the complex flat fading coefficient of the channel between the BS and the ith user in

time slot k, and ni[k] represents the zero-mean unit-variance complex additive white Gaussian

noise vector at the ith user in slot k. The noise processes are assumed to be circularly symmetric

and independent across users. The channel between the BS and each user is assumed to be

quasi-static with coherence time Tc. Thus the fading coefficients remain constant throughout an
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interval of length Tc (or m channel uses) and change independently from one interval to the next.

The fading coefficients {hi} are assumed to be independent and identically distributed (i.i.d.)

across the users and follow a Rayleigh distribution with E [|hi[k]|2] = 1, ∀i, k. We restrict our

attention to this symmetric scenario, and hence, issues related to fairness are outside the scope

of this work. Each packet transmitted by the BS is assumed to be of constant size S. We further

employ the following short-term average power constraint at the base station
1

m
E
[

‖x[k]‖2
]

≤ P.

Clearly, further performance gain may be reaped through a carefully constructed power al-

location policy if this short term power constraint is replaced by a long term one. This line

of work, however, is not pursued here and we only rely on rate adaptation and scheduling

based on the instantaneous channel state available at the BS. Hence the proposed scheduling

strategies, except the incremental redundancy scheme1, assume perfect knowledge of the channel

state information (CSI) at both the transmitter and receiver. In our throughput analysis, we use

capacity expressions for the channel transmission rates. Here we implicitly assume that the

BS employs coding schemes that approach the channel capacity, which justifies our use of the

fundamental information theoretic limit of the channel.

In our delay analysis, we consider backlogged queues, and hence, the only meaningful measure

of delay is the transmission delay. This leads to the following definitions for throughput and

delay that will be adopted in the sequel.

Definition 1: The throughput of a scheduling scheme is defined as the sum of the throughputs

provided by the base station to each individual user within the system.

Definition 2: The delay of a scheduling scheme is defined as the delay between the instant

representing the start of transmission of a packet, and the instant when that packet is successfully

decoded by all the users in the system.
We note here that our notion of delay does not account for the queuing delay experienced

by the packets. We adopt this restricted notion to simplify the delay analysis, since significant

complexity is added to the queuing delay analysis by the formation of coupled queues2 in the

multicast setting. However, as argued in the sequel, our delay analysis offers a lower bound on

1For the incremental redundancy scheme, the BS only needs to know when to stop transmission of the current codeword.
2This notion of coupled queues will be made clear in the discussion of the best user scheduler in the next section.
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the total delay which is very tight in several important special cases. Furthermore, this analysis

provides a very useful tool for rank-ordering the different classes of scheduling algorithms and

sheds light on their structural properties.

To facilitate analytical tractability, we focus only on evaluating the asymptotic scaling laws

of the throughput and delay of the proposed schedulers in the sequel. In this analysis, we use

the following asymptotic notations throughout the paper:

a) f(n) = O(g(n)) iff there are constants c and n0 such that f(n) ≤ cg(n), ∀n > n0.

b) f(n) = Ω(g(n)) iff there are constants c and n0 such that f(n) ≥ cg(n), ∀n > n0.

c) f(n) = Θ(g(n)) iff there are constants c1, c2 and n0 such that c1g(n) ≤ f(n) ≤ c2g(n),

∀n > n0.

III. CROSS-LAYER MULTICAST SCHEDULERS

In a non-cooperative setting, wherein the users cannot help each other to decode the multicast

transmissions, the throughput-optimal scheme is an N -level superposition coding/successive

decoding scheme [13], where N parallel streams (layers) are transmitted simultaneously from

the BS (Layered Multicast). While the user with the best channel can successfully decode all

the N streams, the user with the worst channel can decode only one of the streams successfully

(i.e., with arbitrarily small probability of error). This layered strategy, however, suffers from

excessive complexity (especially when there are a large number of users in the system) and might

be infeasible to implement in practice, since the mobile nodes have low processing power and

tight battery power constraints. This motivates our work where we focus on the throughput and

delay achieved by low complexity scheduling schemes, which do not require any superposition

coding/successive decoding at the BS and users respectively, and are based only on single stream

transmissions by the BS. Interestingly, we identify low complexity schedulers that achieve near-

optimal scaling laws of both throughput and delay with the number of users N . Furthermore,

we establish the asymptotic optimality of the proposed cooperative multicast scheduler in terms

of both delay and throughput.

A. Static Schedulers with Memoryless Decoding

In this class of schedulers, the BS always schedules transmissions to a desired fraction of the

users with favorable channel conditions (by adjusting the transmission rate accordingly). While
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the identity of the users change, based on the instantaneous channel conditions, the fraction

of users that are able to decode every transmitted packet always remains the same (and hence

the name “static”). The memoryless decoding property dictates that the remaining users, who

do not succeed in decoding, flush their memories and wait for future re-transmissions of the

packet. This assumption is imposed to limit the complexity of the encoding/decoding process.

In Section III-B, we relax this memoryless decoding assumption and quantify the gains offered

by carefully constructed ARQ schemes.

Under this class of schedulers, we now study three different schemes of scheduling transmis-

sions to the best, worst and median user in detail. These three schemes highlight the tradeoff

between exploiting the multi-user diversity and the wireless multicast gain offered by the wireless

medium. While the worst user scheduler maximally exploits the wireless multicast gain offered

by the system, the best user scheduler, on the other hand, maximally exploits the available multi-

user diversity in the system. The proposed median user scheduler then strikes a balance between

these two conflicting notions to yield significant gains in the achieved throughput and delay. We

now elucidate these three schemes and characterize the scaling laws of the average throughput

and delay achieved by each of them with the number of users in the system.
1) Worst User Scheduler: This scheme maximally exploits the wireless multicast gain by

always transmitting to the user with the least instantaneous SNR (worst channel) in the system.

Hence at any time instant, the BS chooses its transmission rate to be the rate supported by

the worst user in the system. This enables all the users to successfully decode the transmission

(since any user with a higher supported rate can decode the transmitted information). Thus any

data transmitted by the BS reaches all the users in a single transmission. However, since the

transmission rate supported by the worst user decays as the number of users becomes large,

it is clear that the multi-user diversity inherent in the system works against the performance

of this scheme and results in a decrease in the individual throughput to any user. The average

throughput of the worst user scheduler is given by

Rtot = NE
[

log
(

1 + |hπ(1)|2P
)]

,

where |hπ(1)|2 = minN
i=1 |hi|2 is the minimum channel gain among all the N users in the system,

whose distribution and density functions are given by

F|hπ(1)|2(x) = 1 − e−Nx and f|hπ(1)|2(x) = Ne−Nx, x ≥ 0.
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Throughout the paper, the log(.) function refers to the natural logarithm, and hence, the average

throughput is expressed in nats. Since any transmission by the BS reaches all the users in the

system, the BS needs to maintain only a single common queue for all the users to implement

this scheme.

Theorem 3: The average throughput and the average delay of the worst user scheduler scale

as

Rtot = Θ(1) and D = Θ(N), (1)

with the number of users N .

From Theorem 3, it is clear that the average throughput of the worst user scheduler does not

scale with the number of users N , while the average delay increases linearly with N .

2) Best User Scheduler: This scheme maximally exploits the multi-user diversity available

in the system. At any instant, the BS chooses its transmission rate to be the rate supported by

the best user in the system. Since the transmission rate is adjusted based on the user with the

maximum instantaneous SNR, none of the other users in the system will be able to successfully

decode the transmission. Thus only one user is targeted in every transmission and the scheme

fails to exploit any wireless multicast gain. Hence every packet must be repeated N times before

it reaches all the users. The average throughput of the best user scheduler is given by

Rtot = E
[

log
(

1 + |hπ(N)|2P
)]

,

where |hπ(N)|2 = maxN
i=1 |hi|2 is the maximum channel gain among all the N users in the system,

whose distribution function is given by

F|hπ(N)|2(x) =
(

1 − e−x
)N

, x ≥ 0.

To implement this scheme, the BS needs to maintain a set of N coupled queues, one for

each user in the system. These queues are coupled in the sense that any packet that needs to

be transmitted enters all the N queues simultaneously (to ensure that the packet reaches all the

users), and the BS serves only one of these N queues (the queue corresponding to the best

user) at any time. Thus the delay in transmitting a particular packet to all the users is given by

the delay in transmitting that packet from all of the N queues at the BS. In our analysis, we

benefit from the concept of worst case delay proposed in [14] for analyzing the delay in unicast

networks. In [14], the authors characterized the worst case delay by restating their problem as

August 3, 2007 DRAFT



9

the “coupon collector problem” which has been studied extensively in the mathematics literature

[15], [16]. In the coupon collector problem, the users are assumed to have coupons and the

transmitter is the collector that selects one of the users randomly (with a uniform distribution)

and collects his coupon. The problem is to characterize the average number of trials required

to ensure that the collector collects m coupons from all the users. Our queuing problem is

analogous to the coupon collector problem with the only fundamental difference being that the

size of the coupons is time-varying in our problem due to rate adaptation (the detailed analysis

is presented in the proofs). The following theorem establishes the average throughput and delay

achieved by the best user scheduler.

Theorem 4: The average throughput and the average delay of the best user scheduler scale as

Rtot = Θ(log log N) and D = Ω (N log N) , (2)

with the number of users N .

From Theorems 3 and 4, one can conclude that maximally exploiting the multi-user diversity

yields higher throughput gains than maximally exploiting the wireless multicast gain, when there

are a large number of users in the system. This throughput gain, however, is obtained at the

expense of a higher delay. This observation motivates the investigation of other static schedulers

that achieve a better throughput-delay tradeoff.

3) Median User Scheduler: This scheme strikes a balance between exploiting the multi-user

diversity and the wireless multicast gain offered by the system. At any instant, the BS chooses

its transmission rate such that the better half of the users in the system can successfully decode

each transmission, i.e., the rate is adjusted based on the user whose instantaneous SNR is the

median among the SNRs of all users. Thus (N/2) users are targeted in each transmission and

therefore, unlike the best user scheduler, this scheduler benefits from the wireless multicast gain.

Moreover, unlike the worst user scheduler, the inherent multi-user diversity does not degrade the

performance of this scheduler (since the instantaneous SNR of the median user is not expected

to degrade with N ). Once the BS starts transmitting a packet, it keeps on repeating the same

packet until it is successfully decoded by all the users in the system. Since the BS has perfect

channel knowledge, it can easily keep track whether or not the transmitted packet has been

decoded by all the users in the system. Once the current packet reaches all the N users, the BS

immediately starts transmitting the next packet in the same fashion. The BS needs to maintain
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only a single common queue that caters to all the users in the system.

One drawback of this scheme is that some of the users may receive redundant copies of the

same packet (since any user who has decoded the packet has to wait until all the other users have

decoded that packet). This redundancy leads to a reduction in the effective throughput achieved

by this scheme. However, it is interesting to note that the median user scheduler achieves near-

optimal scaling laws of both throughput and delay, as shown in the following theorem.

Theorem 5: The average throughput and the average delay of the median user scheduler scale

as

Rtot = Θ

(

N

log N

)

and D = Θ (log N) , (3)

with the number of users N .

By comparing the results in Theorems 3, 4 and 5, it is clear that the proposed median user

scheduler achieves a much superior throughput-delay tradeoff than the best and worst user

schedulers, by striking a balance between exploiting multi-user diversity and multicast gain.

An upper bound on the average throughput of any scheduling scheme is given by

Rtot ≤ E

[

N
∑

i=1

log
(

1 + |hi|2P
)

]

= NE
[

log
(

1 + |h1|2P
)]

= Θ(N). (4)

Moreover, the average delay of any scheduling scheme can also be easily lower bounded as

D = Ω(1). (5)

Comparing these bounds with the results in Theorem 5, we find that the proposed median user

scheduler achieves near-optimal scaling laws of both throughput and delay. In fact, the loss

in both delay and throughput scaling laws, compared to the optimal values, is only a factor

of (log N). However, this scheme requires perfect knowledge of the channel gains of all the

users (CSI) at the BS, and hence entails a significant feedback requirement. We next propose a

scheduling scheme that does not require perfect CSI at the BS and entails very minimal feedback.

B. Incremental Redundancy Multicast

In this section, we relax the memoryless decoding requirement and propose a scheme that

employs a higher complexity incremental redundancy encoding/decoding strategy to achieve a

better throughput-delay tradeoff than the median user scheduler. The proposed scheme is an

extension of the incremental redundancy scheme given by Caire et al in [17]. An information
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sequence of b bits is encoded into a codeword of length LM , where M refers to the rate

constraint. The first L bits of the codeword are transmitted in the first attempt. If a user is

unable to successfully decode the transmission, it sends back an ARQ request to the BS. If

the BS receives an ARQ request from any of the users, it transmits the next L bits of the

same codeword in the next attempt. After each transmission attempt, the users try to decode

the transmitted information sequence using the received sequence in that attempt jointly with

the received sequences in all previous ARQ attempts. This process continues until either all N

users successfully decode the information sequence or the rate constraint M is violated. Then

the codeword corresponding to the next b information bits is transmitted in the same fashion.

In this scheme, similar to the median user scheduler proposed earlier, even if some of the

users successfully decode the packet in very few attempts, they still have to wait until all the

N users successfully receive the packet before any new packet is transmitted to them by the

BS. This sub-optimality of the proposed schemes results in significant complexity reduction by

avoiding the use of superposition coding and successive decoding. However, unlike the median

user scheme, this scheme does not require the knowledge of perfect CSI at the BS. The BS only

needs to know when to stop transmission of the current codeword. Hence the feedback required

is minimal. The following result establishes the superior throughput-delay tradeoff achieved by

this scheme compared with the median user scheduler.

Theorem 6: The average throughput and the average delay of the incremental redundancy

multicast scheduler scale as

Rtot = Θ

(

N log log N

log N

)

and D = Θ

(

log N

log log N

)

, (6)

with the number of users N .

Thus, from Theorem 6 and the throughput and delay bounds in (4) and (5), it is clear that

incremental redundancy multicast achieves near-optimal scaling laws of both throughput and

delay. The loss in both delay and throughput scaling laws, compared to the optimal values,

is only a factor of (log N/ log log N). In this approach, the BS again needs to maintain only

a single queue that serves all the users in the system. This approach, however, entails added

complexity in the incremental redundancy encoding and the storage and joint decoding of all

the observations.
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C. Cooperative Multicast

In this section, we demonstrate the benefits of user cooperation and quantify the tremendous

gains that can be achieved by allowing the users to cooperate with each other. In particular, we

propose a cooperation scheme that minimizes the delay while achieving the optimal scaling law

of the throughput. This scheme is divided into two stages. In the first half of each time slot, the

BS transmits the packet to one half of the users in the system (i.e., the median user scheduler).

During the next half of the slot, the BS remains silent. Meanwhile all the users that successfully

decoded the packet in the first half of the slot cooperate with each other and transmit the packet

to the other (N/2) users in the system. This is equivalent to a transmission from a transmitter

equipped with (N/2) transmit antennas to the worst user in a group of (N/2) users. If Rs1 and

Rs2 are the rates supported in the first and second stages respectively, then the actual transmission

rate is chosen to be min{Rs1, Rs2} in both stages of the cooperation scheme. Note that the rate

Rs2 is chosen such that the information can be successfully decoded even by the worst of the

remaining (N/2) users. Here, we note that this scheme requires the BS to know the CSI of the

inter-user channels. The scheme, however, does not require the users to have such transmitter

CSI (i.e., in the second stage the users cooperate blindly by using i.i.d. random coding). The

average throughput of the proposed cooperation scheme is thus given by

Rtot =

(

N

2

)

E [min{Rs1, Rs2}] .

The following theorem establishes the optimality of the proposed scheme, in terms of both delay

and throughput scaling laws.

Theorem 7: The proposed cooperative multicast scheduler achieves the optimal scaling laws

of both delay and throughput. In particular, the average throughput and the average delay of this

scheduler scale as

Rtot = Θ(N) and D = Θ(1), (7)

with the number of users N . Here we assume that the inter-user channels have the same fading

statistics as the channels between the base station and users, and the total transmitted power is

upper bounded by P .

The price for this optimal performance is the added complexity needed to 1) equip every

user terminal with a transmitter, 2) decode/re-encode the information at each cooperating user
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terminal, and 3) inform the BS with perfect CSI of the inter-user channels. In Table I, we provide

a comparison of the throughput-delay tradeoffs achieved by each of the proposed multicast

schedulers.

IV. MULTI-TRANSMIT ANTENNA GAIN

The performance of the best and worst user schedulers proposed in Section III-A depends

on the spread of the fading distribution of the users’ channels. For exploiting significant multi-

user diversity gains, this distribution needs to be well-spread out [18]. The lower the spread of

the distribution, the lesser the multi-user diversity gain (or loss as shown in the following). To

illustrate this point, we consider a scenario where the BS is equipped with L transmit antennas.

We assume that the BS has knowledge of only the total effective SNR at any particular user

and does not know the individual channel gains from each transmit antenna to that user. Under

this assumption, the BS just distributes the available power equally among all the L transmit

antennas. Thus the effective fading power gains follow a normalized Chi-square distribution with

2L degrees of freedom. Note that the fading power gains were exponentially distributed (Chi-

square with 2 degrees of freedom) in the single transmit antenna case. We now characterize the

asymptotic throughput scaling laws of the best and worst user schedulers for this multi-transmit

antenna scenario. Note that all the results in this section are derived for the case where L is a

constant and does not scale with N .

A. Worst User Scheduler

The average throughput of the worst user scheduler is given by

Rtot = NE
[

log
(

1 + |χmin|2P
)]

,

where |χmin|2 = minN
i=1 |χi|2, and |χi|2 corresponds to the effective fading power gain at the ith

user that follows a normalized Chi-square distribution with 2L degrees of freedom and whose

distribution function is given by

F (x) = 1 − e−Lx

(

L−1
∑

k=0

(Lx)k

k!

)

, x ≥ 0. (8)
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Lemma 8: When the base station is equipped with L transmit antennas, the average throughput

of the worst user scheduler scales as

Rtot = Θ
(

N(L−1
L )
)

. (9)

From (9), it is clear that the throughput scaling law of the worst user scheduler improves as

L increases. This throughput improvement is expected since the performance of the worst user

scheduler is known to be degraded by the tail of the fading distribution. Hence as L increases, the

spread of the fading distribution decreases, and consequently, the inherent multi-user diversity

has a reduced effect on the performance of the scheduler. This leads to a rise in the average

throughput of the worst user scheduler from Θ(1) for the single transmit antenna case to almost

Θ(N) for large values of L. Thus the worst user scheduler achieves a near-optimal throughput

scaling for large values of L.

B. Best User Scheduler

The average throughput of the best user scheduler is given by

Rtot = E
[

log
(

1 + |χmax|2P
)]

,

where |χmax|2 = maxN
i=1 |χi|2.

Lemma 9: When the base station is equipped with L transmit antennas, the average throughput

of the best user scheduler scales as

Rtot = Θ

(

log

(

1 +
log N + (L − 1) log log N

L

))

. (10)

Since the best user scheduler leverages multi-user diversity to enhance the throughput, one

can see from (10) that its throughput decreases as L increases.

It is interesting to note that even when the BS is equipped with only 2 transmit antennas

(L = 2), the throughput of the worst user scheduler is significantly higher than that of the

best user scheduler. This is contrary to our conclusion in Section III-A for the single transmit

antenna case, where we showed that the best user scheduler outperforms the worst user scheduler.

Since the multi-user diversity gain decreases as L increases (due to channel hardening [19]), the

wireless multicast gain starts to dominate the achieved throughput for large values of L, which

accounts for the better performance of the worst user scheduler.
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V. NUMERICAL RESULTS

We now present simulation results that validate our theoretical claims. Our results were

obtained through Monte-Carlo simulations and were averaged over 10000 iterations. The power

constraint P is taken to be unity. A comparison of the throughput of all the scheduling schemes

proposed in Section III is presented in Fig. 1 for increasing values of N . Although the incremental

redundancy scheme outperforms the cooperative multicast scheme for small values of N , it is

clear that the latter eventually outperforms the former for large values of N (N > 45). The

corresponding delay-comparison of the proposed schedulers is presented in Fig. 2. It is clear

that the simulation results follow the same trends that were predicted by our asymptotic analysis.

In Fig. 3, we present a comparison of the throughput of the best and worst user schedulers for

the multi-transmit antenna case discussed in Section IV. As predicted by our analysis, the worst

user scheduler outperforms the best user scheduler even for the L = 2 case. It is also clear

that the throughput scaling of the worst user scheduler is almost linear for large values of L

(L ≥ 10). Finally, we observe that the utility of our asymptotic analysis is manifested in its

accurate predictions even with the relatively small number of users used in our simulations (i.e.,

in the order of N = 10).

VI. CONCLUSIONS

In this paper, we adopted a cross-layer perspective to study the throughput-delay tradeoff in the

cellular multicast channel. Towards this end, we proposed three classes of scheduling algorithms

with progressively increasing complexity, and characterized the throughput-delay points achieved

by each class. We first considered the class of low-complexity static schedulers with memoryless

decoding and showed that the proposed median user scheduler achieves near-optimal scaling laws

of both throughput and delay. We then proposed an incremental redundancy multicast scheme

that achieves a superior throughput-delay tradeoff, at the expense of increased encoding/decoding

complexity. We further proposed a cooperation scheme that achieves the optimal scaling laws

of both throughput and delay at the expense of a high RF and computational complexity. We

also analyzed the effect of multiple transmit antennas at the base station, and showed that the

channel hardening effect enables the worst user scheduler to achieve a near-optimal throughput

scaling law for a large number of transmit antennas. Finally, we presented simulation results
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that establish the accuracy of the predictions of our asymptotic analysis in systems with low to

moderate number of users.

APPENDIX I

WORST USER SCHEDULER (PROOF OF THEOREM 3)

The average throughput of the worst user scheduler is given by

Rtot = NE
[

log
(

1 + |hπ(1)|2P
)]

.

Since the {|hi|2} are i.i.d. and exponentially distributed, the random variable |hπ(1)|2 = mini |hi|2

also follows an exponential distribution, and hence

Rtot = N

∫ ∞

0

log(1 + xP )Ne−Nxdx = − Ne(
N

P )Ei

(

−N

P

)

, (11)

where Ei(x) =
∫ x

−∞
(et/t)dt. For large values of x, we have

Ei(−x) =

∫ −x

−∞

et

t
dt = − e−x

x
(1 + ε) ,

where ε → 0 as x → ∞. Using this fact in (11), we get

Rtot = P (1 + ε) = Θ(1).

We now calculate the average delay of the worst user scheduler. The BS maintains a single

common queue for all the users in the system. We consider each coherence interval of length

Tc as a time slot. The service time X is defined as

X = kTc, when Tc

(

k−1
∑

i=1

Ri

)

< S ≤ Tc

(

k
∑

i=1

Ri

)

(k ∈ {1, 2, . . .}). (12)

Here S denotes the size of each packet and Ri represents the service rate in the ith time slot,

which is given by Ri = log(1 + |hi
π(1)|2P ). We let C = (S/Tc) in the sequel. We consider the

sequence of random variables {Ri} and define a stopping instant τ as follows:

τ = min

{

k :
k
∑

i=1

Ri ≥ C

}

.

Using the stopping rule property [20], we get E[τ ]E[R] = E[Ĉ] = E[C + C̃], where C̃ represents

the overshoot of the sum of Ri’s with respect to the threshold C (Hence E[C̃] ≤ E[R]). Thus

the mean stopping time is given by
C

E[R]
≤ E[τ ] ≤ 1 +

C

E[R]
⇒ E[τ ] = Θ

(

1 +
C

E[R]

)

.
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Thus the average service time is given by

X̄ = E[τ ]Tc = Θ

(

Tc +
S

E[R]

)

. (13)

Since for large values of N , the average service rate E[R] = (Rtot/N) = Θ(1/N), the average

delay of the worst user scheduler scales as

D = X̄ = Θ(Tc + NS) = Θ(N).

APPENDIX II

BEST USER SCHEDULER (PROOF OF THEOREM 4)

The average throughput of the best user scheduler is given by

Rtot = E
[

log
(

1 + |hπ(N)|2P
)]

=

∫ ∞

0

log(1 + xP )dF (x),

where |hπ(N)|2 = maxi |hi|2 has the distribution F (x) = (1 − e−x)
N

, x ≥ 0. Integrating by parts

and simplifying, we get

Rtot =
N
∑

i=1

(

N

i

)

(−1)ie(
i

P )Ei

(−i

P

)

. (14)

It has been shown in [21] that the average throughput in (14) scales as

Rtot = Θ(log log N) (15)

with the number of users N .

For calculating the average delay of the best user scheduler, we follow the approach used in

[21]. Here the BS maintains N queues, one for each user in the system. These queues are coupled,

in the sense that any packet that needs to be transmitted enters all the N queues (since it needs

to be transmitted to all the users). Moreover, the BS serves only one of these N queues during

any particular time slot. We first calculate the average service time X̄ required for transmitting

a packet from a queue when the BS always serves that particular queue. The average service

rate of the best user scheduler is given by E[R] = Rtot. Thus, following the argument in the

earlier proof and using (15), it can be shown that (refer (13))

X̄ = Θ

(

Tc +
S

E[R]

)

= Θ

(

Tc +
S

log log N

)

= Θ(1). (16)

We are interested in determining the delay involved in successfully transmitting a particular

packet from all of the N coupled queues. The actual delay, as defined in Section II, is the time
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between the start of transmission of a packet and the instant when the packet reaches all the N

users in the system. In our analysis, we assume that the packet of interest is at the head of all

the N queues during the start of transmission. This assumption thus results in a lower bound on

the actual delay.

We characterize the delay based on the observation that our queuing problem is equivalent

to the well-known “coupon collector” problem. A similar observation was made earlier in [14],

where the authors characterized the delay of the throughput-optimal broadcast scheme. They

assumed that the server (BS) offers a constant rate of service, which is independent of the

instantaneous channel gains of the users. In our analysis, however, we incorporate the effects

of rate adaptation. Let X1, X2, · · · , XN denote the service times (assuming continuous service)

required for transmitting a packet from each of the N queues. Then the delay of the scheduler

is directly proportional to the minimum number of trials required to ensure that the first queue

is served at least (X1/Tc) times by the base station, the second queue is served at least (X2/Tc)

times, and so on ...

We lower bound the average delay by calculating the minimum number of trials Nt required

to ensure that all the N queues are served at least (Xmin/Tc) times by the BS, where Xmin =

min{X1, X2, · · · , XN}. We determine the average number of such required trials E[Nt|Xmin]

using the results derived in [14]. Since the BS serves only one of the N queues at any time and

since the fading is symmetric across users, there is an equal probability that the BS serves any

one of the queues. Thus the probabilities {pj} of the server choosing the jth queue for service

are given by p1 = · · · = pN = (1/N). These probabilities {pj} remain constant through all

time slots and are not functions of the instantaneous service rates {Ri} provided by the BS. The

Moment Generating Function (MGF) of the number of trials required is given by [14]

FNt|Xmin
(z) =

∞
∑

i=0

ziPr(Nt > i) =

∞
∑

i=0

zibi,

where bi is the probability of failure of sending a packet to all the users in i channel uses. The

value of bi is equal to the polynomial (x1 + x2 + · · ·+ xN )i/N i evaluated at x1 = · · · = xN = 1

after removing all terms that have all xi’s with exponent larger than or equal to (Xmin/Tc)

(denoted by the operator {.}) [15]. Thus, the MGF of the number of trials required is given by

FNt|Xmin
(z) =

∞
∑

i=0

zi

N i

{

(x1 + · · ·+ xN )i
}

.
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Using the identities [15]
zi

N i
=

N

i!z

∫ ∞

0

e−
Nt

z tidt and

∞
∑

i=0

{(x1 + · · ·+ xN )i}
i!

=
{

e(x1+···+xN )
}

= e(x1+···+xN ) −
N
∏

i=1

(

exi − S(Xmin

Tc
)(xi)

)

,

where Sm(t) =
∑m−1

i=0 (ti/i!), we get

FNt|Xmin
(z) =

N

z

∫ ∞

0

e−
Nt

z

(

eNt

[

1 −
(

1 − S(Xmin

Tc
)(t)e

−t
)N
])

dt.

Hence the average number of trials required E[Nt|Xmin] is given by [14]

E[Nt|Xmin] = FNt|Xmin
(1) = N

∫ ∞

0

[

1 −
(

1 − S(Xmin

Tc
)(t)e

−t
)N
]

dt

= NE

[

max
1≤i≤N

Yi

]

,

where the Yi’s are i.i.d. random variables that follow a Chi-square distribution with (2Xmin/Tc)

degrees of freedom. Using the results in [14], it can be shown that for such a sequence of random

variables {Yi},

E

[

max
1≤i≤N

Yi

]

= max

{

Θ(log N), Θ

(

Xmin

Tc

)}

. (17)

Thus the average number of trials required is given by

E[Nt|Xmin] = max

{

Θ (N log N) , Θ

(

NXmin

Tc

)}

.

Hence the average delay of the best user scheduler can be lower bounded by

D ≥ EXmin
[E[Nt|Xmin]Tc] = EXmin

[max {Θ (NTc log N) , Θ (NXmin)}] .

Since E [max{Z1, Z2}] ≥ max {E[Z1], E[Z2]}, we have

D = max {Ω (NTc log N) , Ω (NE[Xmin])} .

By observing that E[Xmin] ≤ X̄ and using (16), we get

D = Ω (NTc log N) = Ω (N log N) . (18)
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APPENDIX III

MEDIAN USER SCHEDULER (PROOF OF THEOREM 5)

In the median user scheduler, the BS keeps on repeating the same packet to the best (N/2)

users in each time slot, until all the N users receive it successfully. Due to this repetition, some of

the users receive redundant information (multiple copies of the same packet). Hence the average

throughput of this scheduler cannot be expressed as

Rtot =

(

N

2

)

E

[

log
(

1 + |hπ( N

2
+1)|2P

)]

,

where |hπ( N

2
+1)|2 is the median of the channel gains among all the N users in the system.

However, the average throughput can be easily calculated using the following renewal theory

argument. Consider the renewal process wherein the successful reception of a packet of size S

by all the N users is taken to be the renewal event. Since the average inter-renewal time is given

by the average delay D, it is straightforward to show, using the renewal reward theorem, that

the average throughput of the scheduler is

Rtot =
NS

D
.

Thus, we first need to characterize the average delay D of the median user scheduler. The average

service rate provided to any user is given by

E[R] = E

[

log
(

1 + |hπ( N

2
+1)|2P

)]

.

We first characterize the scaling of E[R] with N . Now suppose that the BS does not repeat the

same packet after one transmission. Then the average throughput obtained is T = (N/2)E[R].

From the results on central order statistics in [22] (Theorem 8.5.1), we know that the sample

median of N i.i.d. exponential random variables converges in distribution to a normal random

variable with mean θ and variance (1/N), where θ = log 2 is the median of the underlying

exponential distribution. Hence
(

|hπ( N

2
+1)|2 − θ

)√
N → W in distribution, (19)

where W is a standard normal random variable. Using Chebyshev’s inequality, we get ∀ε > 0,

Pr
(
∣

∣

∣
|hπ( N

2
+1)|2 − θ

∣

∣

∣
> ε
)

= Pr
(√

N
∣

∣

∣
|hπ( N

2
+1)|2 − θ

∣

∣

∣
> ε

√
N
)

<
E[W 2] + δ

Nε2
→ 0 as N → ∞.
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Thus |hπ( N

2
+1)|2 → θ in probability. Since the log(.) function is continuous,

log
(

1 + |hπ( N

2
+1)|2P

)

→ log(1 + θP ) in probability. (20)

We now derive a lower bound on T . We recall the following property of positive random

variables. Let (Xn) be a set of positive random variables converging to a constant A in probability.

Then ∀ε > 0, Pr (|Xn − A| ≥ ε) < δ, for some small δ > 0. Now

E[Xn] =

∫ ∞

0

tfXn
(t)dt ≥

∫ A+ε

A−ε

tfXn
(t)dt ≥ (A − ε)(1 − δ).

Taking the limit as n → ∞, we get limn→∞ E[Xn] ≥ A. Using this property in (20), we get

lim
N→∞

E

[

log
(

1 + |hπ( N

2
+1)|2P

)]

≥ log(1 + θP ) = Θ(1) ⇒ T = Ω(N). (21)

Combining this with the upper bound on T in (4), we get

T = Θ(N) ⇒ E[R] = E

[

log
(

1 + |hπ( N

2
+1)|2P

)]

= Θ(1). (22)

Thus the average service rate in the median user scheduler does not scale with N . We now

consider an extension of the coupon collector problem, where the users are assumed to have

coupons and the transmitter is the collector that selects (N/2) different users randomly (with a

uniform distribution) in each trial, and collects one coupon from each of them. We characterize

the average number of trials Nt required to ensure that the collector collects at least one coupon

from all the N users. An upper bound can be easily derived by considering a weaker modified

scheme, where in each trial, the (N/2) users are chosen with replacement by the collector from

the set of N users. Thus any user can be selected multiple times within the same trial, and hence

the average number of trials required for this weaker scheme will be greater than that for the

original scheme. It is easy to see that this weaker scheme is in fact the original coupon collector

problem [15] with (N/2) independent coupons collected at each instant. Thus

Nt = O

(

N log N

(N/2)

)

= O(log N).

A lower bound on Nt is derived as follows. During the kth trial, the probability that coupon i

has not been collected is (1/2)k. The expected number of coupons that have not been collected

until the kth trial is given by EN,k = N(1/2)k [20]. We find the number of trials kδ required
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to ensure that Pr(collecting coupons from all N users within kδ trials) > 1 − δ, for some small

δ > 0. This requires that EN,k < ε for some small ε > 0.

⇒ N

2kδ

< ε ⇒ kδ > log2

(

N

ε

)

⇒ kδ = Ω(log N).

Since ensuring that coupons have been collected from all users is stronger than the condition

Pr(collecting coupons from all N users within kδ trials) > 1− δ, the value kδ serves as a lower

bound for Nt. Thus Nt = Θ(log N). Using (22) and the property (19), it can be shown that the

average delay D of the median user scheduler scales as

D = Θ

(

Nt

(

Tc +
S

E[R]

))

= Θ(log N).

The average throughput of the median user scheduler is hence given by

Rtot =
NS

D
= Θ

(

N

log N

)

.

APPENDIX IV

INCREMENTAL REDUNDANCY MULTICAST (PROOF OF THEOREM 6)

Let Ai denote the event that a packet is successfully decoded by all the N users in the system

in i transmission attempts. Following the notation in [17], we define

q(m) = Pr(A1, . . . , Am−1, Am) = p(m − 1) − p(m),

where

p(m) = Pr(A1, . . . , Am−1, Am) = 1 −
m
∑

l=1

q(l),

with p(0) = 1. The rate R̄ is defined as R̄ = (b/L). We define the random variable τ to be the

number of transmission attempts made between the instant when the codeword is generated and

the instant when its transmission is stopped (Transmission is stopped either when the packet is

successfully decoded by all the N users or the number of transmission attempts exceeds the rate

constraint M ). The probability distribution of τ is given by

fτ (m) =



















0, m = 0

q(m), 1 ≤ m ≤ M − 1

q(M) + p(M), m = M

.
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We define the random reward R as follows: R = NR̄ if transmission stops because of successful

decoding and R = 0 if transmission stops because of the rate constraint violation. Hence

E[R] = NR̄

M
∑

m=1

q(m) = NR̄[1 − p(M)].

The mean inter-renewal time is given by

E[τ ] =
M
∑

m=1

mfτ (m) =
M
∑

m=1

mq(m) + Mp(M)

=
M
∑

m=1

m[p(m − 1) − p(m)] + Mp(M) =
M−1
∑

m=0

p(m).

Applying the renewal-reward theorem, we obtain the average throughput of the proposed scheme

as Rtot = (E[R]/E[τ ]) with probability 1. Hence

Rtot =
NR̄ [1 − p(M)]

1 +
∑M−1

m=1 p(m)
.

The average delay D of the scheme is given by the mean inter-renewal time. Hence D = E[τ ].

The unconstrained throughput and delay are obtained by letting M → ∞ and are given by

Rtot =
NR̄

∑∞
m=0 p(m)

and D =
∞
∑

m=0

p(m). (23)

From the earlier definitions, we have

p(m) = Pr(A1, . . . , Am−1, Am) = Pr(Am) = Pr
(

N

min
i=1

m
∑

k=1

I(X; Yik) ≤ R̄

)

= 1 −
[

1 − Pr
(

m
∑

k=1

I(X; Y1k) ≤ R̄

)]N

. (24)

For a Gaussian input distribution, we have
m
∑

k=1

I(X; Y1k) =

m
∑

k=1

log(1 + |hk|2P ).

We know that

log

(

1 +
m
∑

k=1

|hk|2P
)

≤
m
∑

k=1

log(1 + |hk|2P ) ≤
m
∑

k=1

|hk|2P .

Hence

Pr
(

m
∑

k=1

|hk|2P ≤ (eR̄ − 1)

)

≥ Pr
(

m
∑

k=1

log(1 + |hk|2P ) ≤ R̄

)

≥ Pr
(

m
∑

k=1

|hk|2P ≤ R̄

)

.
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Since both R̄ and (eR̄ − 1) are constants, substituting both the lower and upper bounds in (24)

will yield the same scaling with N . So we consider only the lower bound on p(m). Let

s(m) = 1 −
[

1 − Pr
(

m
∑

k=1

|hk|2P ≤ R̄

)]N

.

Hence
∑∞

m=0 p(m) = Θ (
∑∞

m=0 s(m)) w.r.t N . The random variable
∑m

k=1 |hk|2 has a 2m-

dimensional Chi-square distribution with the density and distribution functions given by

f(x) =
e−xxm−1

(m − 1)!
and F (x) = 1 − e−x

(

m−1
∑

l=0

xl

l!

)

, x ≥ 0.

Letting C = (R̄/P ), we have

s(m) = 1 −
[

e−C

(

m−1
∑

l=0

C l

l!

)]N

.

From Taylor’s theorem, we know that (for some 0 < θ < 1)

eC =

m−1
∑

l=0

C l

l!
+

eθCCm

m!
⇒

m−1
∑

l=0

C l

l!
= eC − eθCCm

m!

⇒ s(m) = 1 −
(

1 − e−(1−θ)CCm

m!

)N

.

To find the scaling of
∑∞

m=0 s(m) w.r.t N , we first derive a lower bound by finding the value

of m until which s(m) → 1 as N → ∞. Now

s(m) → 1 ⇒
(

1 − e−(1−θ)CCm

m!

)N

→ 0 ⇒ e−(1−θ)CCm

m!
> Θ

(

1

N

)

.

Using Stirling’s approximation, we have

e−(1−θ)CCm

√
2πme−mmm

>
k

N
, ∀ constant k.

Taking log on both sides, we get

(1 − θ)C − m + m log
(m

C

)

+
1

2
log(2πm) < log N − log k, ∀k.

For large N , this equation can be reduced to m log m < log N . This equation is satisfied by all

values of m such that

m < Θ

(

log N

log log N

)

.
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Since s(m) → 1 as N → ∞ for all values of m that satisfy the above equation, the sum of

s(m)’s can be lower bounded as
∞
∑

m=0

s(m) ≥ Θ

(

log N

log log N

)

. (25)

Similarly an upper bound on
∑∞

m=0 s(m) can be derived by finding the value of m from which

s(m) → 0 as N → ∞. Following the same procedure as before, we find that s(m) → 0 when

m > Θ(log N/ log log N). This yields the following upper bound
∞
∑

m=0

s(m) ≤ Θ

(

log N

log log N

)

.

Combining this with the lower bound in (25), we get
∞
∑

m=0

s(m) = Θ

(

log N

log log N

)

.

Thus the average delay is given by

D =

∞
∑

m=0

p(m) = Θ

(

∞
∑

m=0

s(m)

)

= Θ

(

log N

log log N

)

.

The average throughput of the incremental redundancy scheme is then given by

Rtot =
NR̄

∑∞
m=0 p(m)

=
NR̄

D
= Θ

(

N log log N

log N

)

.

APPENDIX V

COOPERATIVE MULTICAST (PROOF OF THEOREM 7)

The average throughput in the first stage of the cooperation scheme is given by
(

N

2

)

E[Rs1] =

(

N

2

)

E

[

log
(

1 + |hπ( N

2
+1)|2P

)]

.

It is shown in (22) that E[Rs1] = Θ(1). We now characterize the average throughput in the

second stage of the cooperation scheme. As noted earlier, the cooperative transmission by the

users in the second stage is equivalent to the transmission of packets from a transmitter equipped

with (N/2) transmit antennas to the worst user in a group of (N/2) users. Hence the average

transmission rate during the cooperative stage is given by

E[Rs2] = E

[

min
i=1,...,(N/2)

log

(

1 +
|h1i|2 + · · ·+ |h(N/2)i|2

(N/2)
P

)]

,

August 3, 2007 DRAFT



26

where the |hki|2’s represent the inter-user fading power gains that are i.i.d. and exponentially

distributed.

⇒ E[Rs2] = E

[

log

(

1 + min
i=1,...,M

|χi
2M |2
M

P

)]

, (26)

where M = (N/2) and |χi
2M |2’s are Chi-square random variables with 2M degrees of freedom

whose distribution function is given by

F (x) = 1 − e−x

(

M−1
∑

j=0

xj

j!

)

, x ≥ 0.

Using the results on extreme order statistics in [22] (Theorems 8.3.2-8.3.6), it can be shown

that the random variable
(

minM
i=1 |χi

2M |2
)

/bM → W in distribution as M → ∞, where W is a

Weibull type random variable and bM satisfies F (bM) = (1/M). Now

F (bM ) =
1

M
⇒ 1 − e−bM

(

M−1
∑

j=0

bj
M

j!

)

=
1

M
.

Using Taylor’s theorem, we get for some 0 < βM < 1

1 − e−bM

(

ebM − eβM bM bM
M

M !

)

=
1

M
⇒ e−(1−βM )bM bM

M

M !
=

1

M
.

Using Stirling’s approximation, we have

e−(1−βM )bM bM
M√

2πMMMe−M
=

1

M
.

Taking log(.) on both sides, we get

(1 − βM)bM − M log bM = M −
(

M − 1

2

)

log M + C.

Since βM → 0 as M → ∞, we get bM = Θ(M). Thus
(

minM
i=1 |χi

2M |2
)

/M → kW in

distribution, for some constant k > 0. Since the log(.) function is continuous, we have

log

(

1 +
minM

i=1 |χi
2M |2

M
P

)

→ log(1 + kWP ) in distribution, as M → ∞.

Now, we know

log

(

1 +
minM

i=1 |χi
2M |2

M
P

)

≤
(

minM
i=1 |χi

2M |2
)

P

M
≤ |χ1

2M |2P
M

.

Since

E

[

( |χ1
2M |2P
M

)2
]

=
E[(|χ1

2M |2)2]P 2

M2
=

(

1 +
1

M

)

P 2 ≤ 2P 2 < ∞ ∀M,
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the sequence {(|χ1
2M |2P )/M ; M ≥ 1} is uniformly integrable.

⇒
{

log

(

1 +
minM

i=1 |χi
2M |2

M
P

)

; M ≥ 1

}

is uniformly integrable.

It is shown in [23] that if a sequence of random variables {Xn} is uniformly integrable and

Xn → X in distribution as n → ∞, then EXn → EX as n → ∞. Thus

E

[

log

(

1 +
minM

i=1 |χi
2M |2

M
P

)]

→ E[log(1 + kWP )] = Θ(1).

Hence the average transmission rate of the second stage is given by E[Rs2] = Θ(1) w.r.t N .

Since both E[Rs1] and E[Rs2] do not scale with N , we have E [min{Rs1, Rs2}] = Θ(1). Thus

the average throughput of the cooperation scheme is given by

Rtot =

(

N

2

)

E [min{Rs1, Rs2}] = Θ(N).

We now determine the average delay of the cooperation scheme. We note that the BS needs

to maintain only a single queue that caters to all the N users in the system. The information

transmitted by the BS in the first half of each time slot reaches all the N users at the end of that

time slot. Hence the average delay is equal to the average service time required for transmitting

a packet of size S from the queue. Following the steps in Appendix I, the average delay D for

transmitting a packet in the cooperation scheme is given by (refer equation (13))

D = Θ

(

Tc +
S

E[min{Rs1, Rs2}]

)

= Θ(1).

APPENDIX VI

MULTI-TRANSMIT ANTENNA WORST USER SCHEDULER (PROOF OF LEMMA 8)

From the results on extreme order statistics in [22], we know that (|χmin|2/bN) → W in

distribution, where W has a Weibull type distribution and bN satisfies F (bN ) = (1/N), which

implies

1 − e−LbN

(

L−1
∑

k=0

(LbN )k

k!

)

=
1

N
.

Using Taylor’s theorem, we get for some 0 < γN < 1,

1 − e−LbN

(

eLbN − eγN LbN (LbN )L

L!

)

=
1

N
⇒ e−(1−γN )LbN (LbN )L

L!
=

1

N
.

August 3, 2007 DRAFT



28

Taking log(.) on both sides, we get

(1 − γN)LbN − L log bN = log N + L log L − log(L!) .

Since |χmin|2 ≤ |χ1|2 = Θ(1), we know that bN = O(1) and hence the log bN term dominates

the left hand side of the above expression. Thus we have bN = Θ
(

N−( 1
L)
)

.

⇒ N( 1
L)|χmin|2 → kW in distribution, for some constant k > 0.

Since E [|χmin|2] ≤ E [|χ1|2] < ∞, we can use the result in Theorem 2.1 of [24] to conclude that

N( 1
L)

E [|χmin|2] → kE[W ] = Θ(1). Thus E [|χmin|2] = Θ
(

N−( 1
L)
)

. The average throughput of

the worst user scheduler can now be upper bounded, using Jensen’s inequality, as follows

Rtot = NE
[

log
(

1 + |χmin|2P
)]

≤ N log
(

1 + E
[

|χmin|2
]

P
)

⇒ Rtot = O
(

N(L−1
L )
)

. (27)

We lower bound the average throughput as follows

Rtot = N

∫ ∞

0

log(1 + xP )dFmin(x) ≥ N

∫ ∞

bN

log(1 + xP )dFmin(x).

⇒ Rtot ≥ N log (1 + bNP ) [1 − Fmin(bN )] ,

where Fmin(x) = 1 − (1 − F (x))N . Using the fact that F (bN ) = (1/N), we get

Fmin(bN ) = 1 −
(

1 − 1

N

)N

= 1 − eN log(1− 1
N ) = 1 − e−1

(

1 + O

(

1

N

))

.

⇒ Rtot ≥ N log (1 + bNP )

[

e−1 + O

(

1

N

)]

= Θ
(

N log
(

1 + N− 1
L P
))

= Θ
(

N(L−1
L )
)

.

Combining this with the upper bound in (27), we get Rtot = Θ
(

N(L−1
L )
)

.
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APPENDIX VII

MULTI-TRANSMIT ANTENNA BEST USER SCHEDULER (PROOF OF LEMMA 9)

From the results on extreme order statistics in [22], we know that
( |χmax|2 − aN

bN

)

→ W in distribution,

where W has a Gumbel distribution and aN and bN satisfy F (aN) = 1 − (1/N) and bN =

(1/Nf(aN)), where f(.) denotes the probability density function obtained from (8). Now

F (aN) = 1 − 1

N
⇒ e−LaN (LaN )(L−1)

(L − 1)!

(

1 + O

(

1

aN

))

=
1

N
.

Taking log(.) on both sides and using Stirling’s approximation, we get

LaN − (L − 1) log aN = log N + (L − 1) − 1

2
log(L − 1) + K.

⇒ aN =
log N + (L − 1) log log N

L
+ O(log log N).

Since

f(aN) =
Le−LaN (LaN )(L−1)

(L − 1)!
= Θ

(

1

N

)

,

we have bN = C = Θ(1). Thus

|χmax|2 −
(

log N + (L − 1) log log N

L
+ O(log log N)

)

→ CW in distribution.

Using Chebyshev’s inequality, it is easy to show that
|χmax|2

(

log N+(L−1) log log N
L

) → 1 in probability.

Since any Chi-squared random variable with 2L degrees of freedom can be expressed as the

sum of L exponential i.i.d. random variables, we have

E
[

|χmax|2
]

= E

[

N
max
i=1

{

Zi
1 + · · · + Z i

L

L

}]

≤ E

[

N
max
i=1

Zi
1

]

,

where Z i
j’s are exponential random variables with unit mean. Hence

E





|χmax|2
(

log N+(L−1) log log N
L

)



 ≤ E
[

maxN
i=1 Zi

1

]

(

log N+(L−1) log log N
L

) ≤ k log N
(

log N+(L−1) log log N
L

) ≤ kL < ∞.

Thus we can apply the Dominated Convergence Theorem to get

E





|χmax|2
(

log N+(L−1) log log N
L

)



→ 1 ⇒ E
[

|χmax|2
]

= Θ

(

log N + (L − 1) log log N

L

)

.
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Using Jensen’s inequality, we get

Rtot = E
[

log
(

1 + |χmax|2P
)]

≤ log
(

1 + E
[

|χmax|2
]

P
)

⇒ Rtot = O

(

log

(

1 +
log N + (L − 1) log log N

L

))

. (28)

The average throughput of the best user scheduler can be lower bounded as follows

Rtot =

∫ ∞

0

log(1 + xP )dFmax(x) ≥
∫ ∞

aN

log(1 + xP )dFmax(x).

⇒ Rtot ≥ log (1 + aNP ) [1 − Fmax(aN)] ,

where Fmax(x) = (F (x))N . Using the fact that F (aN) = 1 − 1
N

, we get

Fmax(aN) = (F (aN))N =

(

1 − 1

N

)N

= e−1

(

1 + O

(

1

N

))

.

⇒ Rtot ≥ log (1 + aNP )

[

1 − e−1 + O

(

1

N

)]

= Θ (log (1 + aNP )) .

⇒ Rtot = Ω

(

log

(

1 +
log N + (L − 1) log log N

L

))

.

Combining this with the upper bound in (28), we get

Rtot = Θ

(

log

(

1 +
log N + (L − 1) log log N

L

))

.
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Scheme Average Throughput Average Delay

Rtot D

Worst User Scheduler Θ(1) Θ(N)

Best User Scheduler Θ(log log N) Ω(N log N)

Median User Scheduler Θ

(

N

log N

)

Θ(log N)

IR Multicast Θ

(

N log log N

log N

)

Θ

(

log N

log log N

)

Cooperative Multicast Θ(N) Θ(1)

TABLE I

COMPARISON OF THE THROUGHPUT-DELAY TRADEOFFS ACHIEVED BY THE PROPOSED MULTICAST SCHEDULERS
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Fig. 1. Comparison of the throughput of the proposed multicast schedulers
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Fig. 2. Comparison of the delay of the proposed multicast schedulers
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Fig. 3. Comparison of the throughput of the best and worst user schedulers for the multi-transmit antenna scenario (L transmit

antennas at the base station)
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